Example 14 Self Tutor
Use the vertex, axis of symmetry, andy-intercept to graph y=¡2(x+1)^2 +4.
The vertex is(¡ 1 ,4).
The axis of symmetry is x=¡ 1.
When x=0, y=¡2(1)^2 +4
=2
a< 0 so the shape is
5 Use the vertex, axis of symmetry, andy-intercept to graph:
a y=(x¡1)^2 +3 b f(x)=2(x+2)^2 +1 c y=¡2(x¡1)^2 ¡ 3
d f(x)=^12 (x¡3)^2 +2 e y=¡^13 (x¡1)^2 +4 f f(x)=¡ 101 (x+2)^2 ¡ 3
6 Match each quadratic function with its corresponding graph:
a y=¡(x+1)^2 +3 b y=¡2(x¡3)^2 +2 c y=x^2 +2
d y=¡(x¡1)^2 +1 e y=(x¡2)^2 ¡ 2 f y=^13 (x+3)^2 ¡ 3
g y=¡x^2 h y=¡^12 (x¡1)^2 +1 i y=2(x+2)^2 ¡ 1
ABC
DEF
GH I
y
x
V,(-1 4)
2
x= -1\
O
-3
2 x
y
O
-2
3
x
y
O
80 Quadratics (Chapter 3)
2
2
3
3 x
y
O
-3
-4
2 x
y
O
x
y
O
3
-8 -4
-3
x
y
O 22
3
-2 -2
1 x
y
O
2
2
2 x
y
-2 O
-2
2
4 x
y
O
-2
2
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_03\080CamAdd_03.cdr Friday, 20 December 2013 12:32:45 PM GR8GREG