Example 14 Self Tutor
Use the vertex, axis of symmetry, andy-intercept to graph y=¡2(x+1)^2 +4.The vertex is(¡ 1 ,4).
The axis of symmetry is x=¡ 1.When x=0, y=¡2(1)^2 +4
=2a< 0 so the shape is5 Use the vertex, axis of symmetry, andy-intercept to graph:
a y=(x¡1)^2 +3 b f(x)=2(x+2)^2 +1 c y=¡2(x¡1)^2 ¡ 3
d f(x)=^12 (x¡3)^2 +2 e y=¡^13 (x¡1)^2 +4 f f(x)=¡ 101 (x+2)^2 ¡ 36 Match each quadratic function with its corresponding graph:
a y=¡(x+1)^2 +3 b y=¡2(x¡3)^2 +2 c y=x^2 +2
d y=¡(x¡1)^2 +1 e y=(x¡2)^2 ¡ 2 f y=^13 (x+3)^2 ¡ 3
g y=¡x^2 h y=¡^12 (x¡1)^2 +1 i y=2(x+2)^2 ¡ 1ABCDEFGH IyxV,(-1 4)2x= -1\O-32 xyO-23xyO80 Quadratics (Chapter 3)22
33 xyO-3-42 xy
OxyO3-8 -4-3xyO 223-2 -21 xyO222 xy-2 O
-224 xyO
-22cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_03\080CamAdd_03.cdr Friday, 20 December 2013 12:32:45 PM GR8GREG