Cambridge Additional Mathematics

(singke) #1

Example 14 Self Tutor


Use the vertex, axis of symmetry, andy-intercept to graph y=¡2(x+1)^2 +4.

The vertex is(¡ 1 ,4).
The axis of symmetry is x=¡ 1.

When x=0, y=¡2(1)^2 +4
=2

a< 0 so the shape is

5 Use the vertex, axis of symmetry, andy-intercept to graph:
a y=(x¡1)^2 +3 b f(x)=2(x+2)^2 +1 c y=¡2(x¡1)^2 ¡ 3
d f(x)=^12 (x¡3)^2 +2 e y=¡^13 (x¡1)^2 +4 f f(x)=¡ 101 (x+2)^2 ¡ 3

6 Match each quadratic function with its corresponding graph:
a y=¡(x+1)^2 +3 b y=¡2(x¡3)^2 +2 c y=x^2 +2
d y=¡(x¡1)^2 +1 e y=(x¡2)^2 ¡ 2 f y=^13 (x+3)^2 ¡ 3
g y=¡x^2 h y=¡^12 (x¡1)^2 +1 i y=2(x+2)^2 ¡ 1

ABC

DEF

GH I

y

x

V,(-1 4)

2

x= -1\

O

-3

2 x

y

O

-2

3

x

y

O

80 Quadratics (Chapter 3)

2

2


3

3 x

y

O

-3

-4

2 x

y
O

x

y

O

3

-8 -4

-3

x

y

O 22

3

-2 -2

1 x

y

O

2

2

2 x

y

-2 O
-2

2

4 x

y

O
-2

2

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_03\080CamAdd_03.cdr Friday, 20 December 2013 12:32:45 PM GR8GREG

Free download pdf