Quadratics (Chapter 3) 83
To graph a quadratic of the form y=ax^2 +bx+c, we:
² find the axis of symmetry x=¡b
2 a
² substitute to find they-coordinate of the vertex
² state they-interceptc
² find thex-intercepts by solving ax^2 +bx+c=0, either by factorisation or using the quadratic
formula.
Example 17 Self Tutor
Consider the quadratic f(x)=2x^2 +8x¡ 10.
a Find the axis of symmetry. b Find the coordinates of the vertex.
c Find the axes intercepts. d Hence, sketch the function.
e State the range of the function.
f(x)=2x^2 +8x¡ 10 has a=2, b=8, and c=¡ 10.
a> 0 , so the shape is
a
¡b
2 a
=
¡ 8
2(2)
=¡ 2
The axis of symmetry is x=¡ 2.
b f(¡2) = 2(¡2)^2 +8(¡2)¡ 10
=¡ 18
The vertex is (¡ 2 ,¡18).
c They-intercept is¡ 10.
When y=0, 2 x^2 +8x¡10 = 0
) 2(x^2 +4x¡5) = 0
) 2(x+ 5)(x¡1) = 0
) x=¡ 5 or 1
) thex-intercepts are¡ 5 and 1.
d
e The range is fy:y>¡ 18 g.
EXERCISE 3D.3
1 Locate the turning point or vertex for each of the following quadratic functions:
a f(x)=x^2 ¡ 4 x+2 b y=x^2 +2x¡ 3
c y=2x^2 +4 d f(x)=¡ 3 x^2 +1
e y=2x^2 +8x¡ 7 f f(x)=¡x^2 ¡ 4 x¡ 9
g y=2x^2 +6x¡ 1 h f(x)=2x^2 ¡ 10 x+3
i y=¡^12 x^2 +x¡ 5
The vertex lies on the
axis of symmetry.
y
-5 1 x
-10
x=-2
(-2 -18),
O
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_03\083CamAdd_03.cdr Friday, 17 January 2014 3:58:59 PM BRIAN