Irodov – Problems in General Physics

(Joyce) #1
xn+1
xn dx= — (n —1) n+1
dx = x
x

S


sin x dx= — cos x

cos x dx= sin x

tan x dx= — in cos x

S


cot x dx = In sin x

.c


dx cos x — tan x
C dx — cot x
j sin' x
ex dx= ex
dx
J 1+0 =arctanx
arcsin x

In (x+ 17 Z^2 -
V x 2 -1
Integration by parts: u du = uv— v du

9. Derivatives and Integrals

Function Derivative Function Derivative Function Derivative


xn
1
x
1
xn

1 7x
ex
enx
ax
In x

nxn-1
1
--x T
_ n

sin x
cos x

tan x

cot x

cos x
—sin x arcsin x
arccos x

aretan x

1
V 1— x 2
1
cos

1
2 x
1

1 / 1— x 2
xn+i 1
1 sing x 1-{-x'
2 v x -. f
ex
nenx
ax Ina
—^1
x

Vu

In u

_ u
v

u'
arccot x
sinh x
cosh x
tank x

cosh x

2 Va +
u'
— a
vu'v'u

1 x2
cosh x
sinh x
1
cosha x
1

v 2

sinh 2 x

Some Definite Integrals

1

1, (^) n=0
et e-x dx= tili ll ii-, n=1/2
o 1, n=1
2, n= 2
00 I 1 /2.1iTT, u=^0
5 x n tr* xa dx = i "2' -: n = 1
o^1 /^4 17 a., n=2
1/2, n=3
(^0) c ° zn dx

2.31, n=1/2
n 2 /6, n=1
2.405, n-= 2
n 4 /15, n= 3
24.9, n=4


r c& x 3 dx


0.225, a= 1
1.18, a= 2
2.56, cc= 3
4.91, a= 5
6.43, cc= 10

j ex— 1
o

ex 1
o
Free download pdf