Data Mining: Practical Machine Learning Tools and Techniques, Second Edition

(Brent) #1
64.6
(24/19.2%)

CHMIN

≤ 7.5 > 7.5

MMAX

≤ 8.5 (8.5,28]

MMAX

> 28

19.3
(28/8.7%)

≤ 2500

29.8
(37/8.18%)

(2500,
4250]

CACH

> 4250

MYCT

≤ 0.5
59.3
(24/16.9%)

(0.5,8.5]

≤ 550
37.3
(19/11.3%)

18.3
(7/3.83%)

> 550

75.7
(10/24.6%)

≤ 10000
133
(16/28.8%)

> 10000

157
(21/73.7%)

≤ 28000 > 28000

MMIN

≤ 58

783
(5/359%)

> 58

281
(11/56%)

≤ 12000
492
(7/53.9%)

> 12000

CACH MMAX

CHMAX

(b)

CHMIN

≤ 7.5 > 7.5

≤ 8.5

LM4
(50/22.1%)

> 8.5

LM1
(65/7.32%)

≤ 4250 > 4250

≤ 0.5

LM2
(26/6.37%)

LM3
(24/14.5%)

(0.5,8.5]

LM5
(21/45.5%)

≤ 28000

LM6
(23/63.5%)

> 28000

MMAX

CACH

MMAX

CACH

(c)


LM1 PRP=8.29+0.004 MMAX+2.77 CHMIN
LM2 PRP=20.3+0.004 MMIN-3.99 CHMIN
+0.946 CHMAX
LM3 PRP=38.1+0.012 MMIN
LM4 PRP=19.5+0.002 MMAX+0.698 CACH
+0.969 CHMAX
LM5 PRP=285-1.46 MYCT+1.02 CACH
-9.39 CHMIN
LM6 PRP=-65.8+0.03 MMIN-2.94 CHMIN
+4.98 CHMAX

PRP =
-56.1
+0.049 MYCT
+0.015 MMIN
+0.006 MMAX
+0.630 CACH
-0.270 CHMIN
+1.46 CHMAX
(a)


Figure 3.7Models for the CPU performance data: (a) linear regression, (b) regression
tree, and (c) model tree.

Free download pdf