Data Mining: Practical Machine Learning Tools and Techniques, Second Edition

(Brent) #1

References


Adriaans, P., and D. Zantige. 1996.Data mining.Harlow, England: Addison-
Wesley.
Agrawal, R., and R. Srikant. 1994. Fast algorithms for mining association rules in
large databases. In J. Bocca, M. Jarke, and C. Zaniolo, editors,Proceedings of
the International Conference on Very Large Databases, Santiago, Chile. San
Francisco: Morgan Kaufmann, pp. 478–499.
Agrawal, R., T. Imielinski, and A. Swami. 1993a. Database mining: A performance
perspective.IEEE Transactions on Knowledge and Data Engineering 5(6):
914–925.
———. 1993b. Mining association rules between sets of items in large databases.
In P. Buneman and S. Jajodia, editors,Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, Washington, DC. New York:
ACM, pp. 207–216.
Aha, D. 1992. Tolerating noisy, irrelevant, and novel attributes in instance-
based learning algorithms.International Journal of Man-Machine Studies
36(2):267–287.
Almuallin, H., and T. G. Dietterich. 1991. Learning with many irrelevant features.
In Proceedings of the Ninth National Conference on Artificial Intelligence,
Anaheim, CA. Menlo Park, CA: AAAI Press, pp. 547–552.
———. 1992. Efficient algorithms for identifying relevant features. In Proceedings
of the Ninth Canadian Conference on Artificial Intelligence, Vancouver, BC. San
Francisco: Morgan Kaufmann, pp. 38–45.
Appelt, D. E. 1999. Introduction to information extraction technology.Tutorial, Int
Joint Conf on Artificial Intelligence IJCAI’99.Morgan Kaufmann, San Mateo.
Tutorial notes available at http://www.ai.sri.com/~appelt/ie-tutorial.

485


P088407-REF.qxd 4/30/05 11:24 AM Page 485

Free download pdf