Data Mining: Practical Machine Learning Tools and Techniques, Second Edition

(Brent) #1
Cavnar, W. B., and J. M. Trenkle. 1994. N-Gram-based text categorization.Proceed-
ings of the Third Symposium on Document Analysis and Information Retrieval.
Las Vegas, NV, UNLV Publications/Reprographics, pp. 161–175.
Cendrowska, J. 1998. PRISM: An algorithm for inducing modular rules.Interna-
tional Journal of Man-Machine Studies27(4):349–370.

Chakrabarti, S. 2003.Mining the web: discovering knowledge from hypertext data.San
Francisco, CA: Morgan Kaufmann.
Cheeseman, P., and J. Stutz. 1995. Bayesian classification (AutoClass): Theory and
results. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,
editors,Advances in Knowledge Discovery and Data Mining.Menlo Park, CA:
AAAI Press, pp. 153–180.

Chen, M.S., J. Jan, and P. S. Yu. 1996. Data mining: An overview from a database
perspective.IEEE Transactions on Knowledge and Data Engineering 8(6):
866–883.
Cherkauer, K. J., and J. W. Shavlik. 1996. Growing simpler decision trees to facili-
tate knowledge discovery. In E. Simoudis, J. W. Han, and U. Fayyad, editors,
Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining, Portland, OR. Menlo Park, CA: AAAI Press, pp. 315–318.

Cleary, J. G., and L. E. Trigg. 1995. K*: An instance-based learner using an entropic
distance measure. In A. Prieditis and S. Russell, editors,Proceedings of the
Twelfth International Conference on Machine Learning, Tahoe City, CA. San
Francisco: Morgan Kaufmann, pp. 108–114.
Cohen, J. 1960. A coefficient of agreement for nominal scales.Educational and
Psychological Measurement20:37–46.

Cohen, W. W. 1995. Fast effective rule induction. In A. Prieditis and S. Russell,
editors, Proceedings of the Twelfth International Conference on Machine
Learning, Tahoe City, CA. San Francisco: Morgan Kaufmann, pp. 115–123.
Cooper, G. F., and E. Herskovits. 1992. A Bayesian method for the induction of prob-
abilistic networks from data.Machine Learning9(4):309–347.

Cortes, C., and V. Vapnik. 1995. Support vector networks. Machine Learning
20(3):273–297.
Cover, T. M., and P. E. Hart. 1967. Nearest-neighbor pattern classification.IEEE
Transactions on Information TheoryIT-13:21–27.

Cristianini, N., and J. Shawe-Taylor. 2000.An introduction to support vector machines
and other kernel-based learning methods. Cambridge, UK: Cambridge
University Press.

488 REFERENCES


P088407-REF.qxd 4/30/05 11:24 AM Page 488

Free download pdf