Data Mining: Practical Machine Learning Tools and Techniques, Second Edition

(Brent) #1
Drucker, H. 1997. Improving regressors using boosting techniques. In D. H. Fisher,
editor,Proceedings of the Fourteenth International Conference on Machine
Learning, Nashville, TN. San Francisco: Morgan Kaufmann, pp. 107–115.

Drummond, C., and R. C. Holte. 2000. Explicitly representing expected cost: An
alternative to ROC representation. In R. Ramakrishnan, S. Stolfo, R. Bayardo,
and I. Parsa, editors,Proceedings of the Sixth International Conference on
Knowledge Discovery and Data Mining, Boston, MA. New York: ACM, pp.
198–207.

Duda, R. O., and P. E. Hart. 1973.Pattern classification and scene analysis.New York:
John Wiley.

Duda, R. O., P. E. Hart, and D. G. Stork. 2001.Pattern Classification, second edition.
New York: John Wiley.

Dumais, S. T., J. Platt, D. Heckerman, and M. Sahami. 1998. Inductive learning algo-
rithms and representations for text categorization. In Proceedings of the ACM
Seventh International Conference on Information and Knowledge Management,
Bethesda, MD. New York: ACM, pp. 148–155.

Efron, B., and R. Tibshirani. 1993.An introduction to the bootstrap.London:
Chapman and Hall.

Egan, J. P. 1975.Signal detection theory and ROC analysis.Series in Cognition and
Perception. New York: Academic Press.

Fayyad, U. M., and K. B. Irani. 1993. Multi-interval discretization of continuous-
valued attributes for classification learning. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence, Chambery, France. San
Francisco: Morgan Kaufmann, pp. 1022–1027.

Fayyad, U. M., and P. Smyth. 1995. From massive datasets to science catalogs:
Applications and challenges. In Proceedings of the Workshop on Massive
Datasets.Washington, DC: NRC, Committee on Applied and Theoretical
Statistics.

Fayyad, U. M., G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. 1996.
Advances in knowledge discovery and data mining.Menlo Park, CA: AAAI
Press/MIT Press.

Fisher, D. 1987. Knowledge acquisition via incremental conceptual clustering.
Machine Learning2(2):139–172.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems.
Annual Eugenics 7(part II):179–188. Reprinted in Contributions to
Mathematical Statistics, 1950. New York: John Wiley.

490 REFERENCES


P088407-REF.qxd 4/30/05 11:24 AM Page 490

Free download pdf