Data Mining: Practical Machine Learning Tools and Techniques, Second Edition

(Brent) #1
Freund, Y., and L. Mason. 1999. The alternating decision-tree learning algorithm.
In I. Bratko and S. Dzeroski, editors,Proceedings of the Sixteenth International
Conference on Machine Learning, Bled, Slovenia. San Francisco: Morgan
Kaufmann, pp. 124–133.
Freund, Y., and R. E. Schapire. 1996. Experiments with a new boosting algorithm.
In L. Saitta, editor,Proceedings of the Thirteenth International Conference on
Machine Learning, Bari, Italy. San Francisco: Morgan Kaufmann, pp. 148–156.
———. 1999. Large margin classification using the perceptron algorithm.Machine
Learning37(3):277–296.
Friedman, J. H. 1996. Another approach to polychotomous classification. Technical
Report, Department of Statistics, Stanford University, Stanford, CA.
———. 2001. Greedy function approximation: A gradient boosting machine.
Annals of Statistics29(5):1189–1232.
Friedman, J. H., J. L. Bentley, and R. A. Finkel. 1977. An algorithm for finding best
matches in logarithmic expected time.ACM Transactions on Mathematical
Software3(3):209–266.
Friedman, J. H., T. Hastie, and R. Tibshirani. 2000. Additive logistic regression: A
statistical view of boosting.Annals of Statistics28(2):337–374.
Friedman, N., D. Geiger, and M. Goldszmidt. 1997. Bayesian network classifiers.
Machine Learning29(2):131–163.
Fulton, T., S. Kasif, and S. Salzberg. 1995. Efficient algorithms for finding multiway
splits for decision trees. In A. Prieditis and S. Russell, editors,Proceedings of
the Twelfth International Conference on Machine Learning, Tahoe City, CA. San
Francisco: Morgan Kaufmann, pp. 244–251.
Fürnkrantz, J. 2002. Round robin classification. Journal of Machine Learning
Research2:721–747.
Fürnkrantz, J., and P. A. Flach. 2005. ROC ’n’ rule learning: Towards a better under-
standing of covering algorithms.Machine Learning 58(1):39–77.
Fürnkrantz, J., and G. Widmer. 1994. Incremental reduced-error pruning. In H.
Hirsh and W. Cohen, editors, Proceedings of the Eleventh International
Conference on Machine Learning, New Brunswick, NJ. San Francisco: Morgan
Kaufmann, pp. 70–77.
Gaines, B. R., and P. Compton. 1995. Induction of ripple-down rules applied to
modeling large databases.Journal of Intelligent Information Systems5(3):211–228.
Genesereth, M. R., and N. J. Nilsson. 1987.Logical foundations of artificial intelli-
gence.San Francisco: Morgan Kaufmann.

492 REFERENCES


P088407-REF.qxd 4/30/05 11:24 AM Page 492

Free download pdf