148 PROBABILITY [CHAP. 7
7.39. LetXbe a random variable with meanμ=40 and standard deviationσ=2. Use Chebyshev’s Inequality
to find abfor whichP( 40 −b≤X≤ 40 +b)≥ 0 .95.
First solve 1− 1 /k^2 = 0 .95 forkas follows:0. 05 =
1
k^2or k^2 =
1
0. 05=20 or k=√
20 = 2√
5Then, by Chebyshev’s Inequality,b=kσ= 10√
5 ≈ 23 .4. Hence[P( 16. 6 ≤X≤ 63. 60 )≥ 0. 95 ]7.40. LetXbe a random variable with distributionf. TherthmomentMrofXis defined byMr=E(Xr)=∑
xirf(xi)Find the first four moments ofXifXhas the distribution:x −21 3
f(x) 1/2 1/4 1/4NoteM 1 is the mean ofX, andM 2 is used in computing the standard deviation ofX.
Use the formula forMrto obtain:M 1 =∑
xif(xi)=− 2( 1
2)
+ 1( 1
4)
+ 3( 1
4)
= 0
M 2 =∑
x^2 if(xi)= 4( 1
2)
+ 1( 1
4)
+ 9( 1
4)
= 4. 5M 3 =∑
x^3 if(xi)=− 8( 1
2)
+ 1( 1
4)
+ 27( 1
4)
= 3
M 4 =∑
x^4 if(xi)= 16( 1
2)
+ 1( 1
4)
+ 81( 1
4)
= 28. 57.41. Prove Theorem 7.10 (Chebyshev’s Inequality): Fork>0,P(μ−kσ≤X≤μ+kσ)≥ 1 −k^12By definition
σ^2 =Var(X)=∑
(xi−μ)^2 pi
Delete all terms from the summation for whichxiis in the interval[μ−kσ, μ+kσ]; that is, delete all terms for which
|xi−μ|≤kσ. Denote the summation of the remaining terms by
∑∗
(xi−μ)^2 pi. Then
[
σ^2 ≥∑∗
(xi−μ)^2 pi≥∑∗
k^2 σ^2 pi=k^2 σ^2∑∗
pi=k^2 σ^2 P(|X−μ|>kσ)]=k^2 σ^2 [ 1 −P(|X−μ|≤kσ)]=k^2 σ^2 [ 1 −P(μ−kσ≤X≤μ+kσ)]Ifσ>0, then dividing byk^2 σ^2 gives1
k^2 ≥^1 −P(μ−kσ≤X≤μ+kσ) or P(μ−kσ≤X≤μ+kσ)≥^1 −1
k^2which proves Chebyshev’s Inequality forσ>0. Ifσ=0, thenxi=μfor allpi>0, andP(μ−k· 0 ≤X≤μ+k· 0 )=P(X=μ)= 1 > 1 −k^12which completes the proof.