Schaum's Outline of Discrete Mathematics, Third Edition (Schaum's Outlines)

(Martin Jones) #1

426 VECTORS AND MATRICES [APP. A


(c) Computef (A)by first substitutingAforxand 5Ifor the constant term 5 inf(x)= 2 x^3 − 4 x+5:

f (A)= 2 A^3 − 4 A+ 5 I= 2

[
− 730
60 − 67

]
− 4

[
12
4 − 3

]
+ 5

[
10
01

]

Then multiply each matrix by its respective scalar:

f (A)=

[
− 14 60
120 − 134

]
+

[
− 4 − 8
−16 12

]
+

[
50
05

]

Lastly, add the corresponding elements in the matrices:

f (A)=

[
− 14 − 4 + 560 − 8 + 0
120 − 16 + 0 − 134 + 12 + 5

]
=

[
− 13 52
104 − 117

]

(d) Computeg(A)by first substitutingAforxand 11Ifor the constant term 11 ing(x)=x^2 + 2 x−11:

g(A)=A^2 + 2 A− 11 I=

[
9 − 4
− 817

]
+ 2

[
12
4 − 3

]
− 11

[
10
01

]

=

[
9 − 4
− 817

]
+

[
24
8 − 6

]
+

[
− 11 0
0 − 11

]
=

[
00
00

]

(Sinceg(A)=0, the matrixAis a zero of the polynomialg(x).)

A.15. Compute each determinant: (a)






45
− 3 − 2




∣;(b)





a−bb
ba+b




∣.

(a)


∣∣

45
− 3 − 2


∣∣
∣=^4 (−^2 )−(−^3 )(^5 )=−^8 +^15 =^7.

(b)

∣∣
∣∣a−bb
ba+b

∣∣
∣∣=(a−b)(a+b)−b^2 =a^2 −b^2 −b^2 =a^2 − 2 b^2.

A.16. Find the determinant of each matrix:


(a) A=



123
4 − 23
05 − 1


⎦; (b) B=



4 − 1 − 2
02 − 3
521


⎦; (c) C=



2 − 34
12 − 3
− 1 − 25



(Hint: Use the diagram in Fig. A-3 (b)):

(a) |A|= 2 + 0 + 60 − 0 − 15 + 8 = 55
(b) |B|= 8 + 15 + 0 + 20 + 24 + 0 = 67
(c) |C|= 20 − 9 − 8 + 8 − 12 + 15 = 14

A.17. Find the inverse of: (a)A=


[
53
42

]
;(b)B=

[
− 26
3 − 9

]
.

Use the formula in Section A.9.

(a) First find|A|= 5 ( 2 )− 3 ( 4 )= 10 − 12 =− 2 .Next, interchange the diagonal elements, take the negatives of the
nondiagonal elements, and multiply by 1/|A|:

A−^1 =−
1
2

[
2 − 3
− 45

]
=

[

− (^132)
2 −^52
]
(b) First find|B|=− 2 (− 9 )− 6 ( 3 )= 18 − 18 = 0 .Since|B|= 0 ,Bhas no inverse.
A.18. Find the inverse of: (a)A=


1 − 22
2 − 36
117

⎦;(b)B=


13 − 4
15 − 1
313 − 6

⎦.

Free download pdf