66 FUNCTIONS AND ALGORITHMS [CHAP. 3
3.26. Prove the following equivalent formulation of the Schroeder–Bernstein Theorem 3.5:
SupposeX⊇Y⊇X 1 andXX 1. ThenXY.
SinceXX 1 there exists a one-to-one correspondence (bijection)f:X→X 1 SinceX⊇Y, the restriction of
ftoY, which we also denote byf, is also one-to-one. Letf(Y)=Y 1. ThenYandY 1 are equipotent,
X⊇Y⊇X 1 ⊇Y 1
andf:Y→Y 1 is bijective. But nowY⊇X 1 ⊇Y 1 andYY 1. For similar reasons,X 1 andf(X 1 )=X 2 are
equipotent,
X⊇Y⊇X 1 ⊇Y 1 ⊇X 2
andf:X 1 →X 2 is bijective.Accordingly, there exist equipotent setsX, X 1 ,X 2 ,...and equipotent setsY, Y 1 ,Y 2 ,...
such that
X⊇Y⊇X 1 ⊇Y 1 ⊇X 2 ⊇Y 2 ⊇X 3 ⊇Y 3 ⊇···
andf:Xk→Xk+ 1 andf:Yk→Yk+ 1 are bijective.
Let
B=X∩Y∩X 1 ∩Y 1 ∩X 2 ∩Y 2 ∩···
Then
X=(X\Y)∪(Y\X 1 )∪(X 1 \Y 1 )∪···∪B
Y=(Y\X 1 )∪(X 1 \Y 1 )∪(Y 1 \X 2 )∪···∪B
Furthermore,X\Y, X 1 \Y 1 ,X 2 \Y 2 ,...are equipotent. In fact, the function
f:(Xk\Yk)→(Xk+ 1 \Yk+ 1 )
is one-to-one and onto.
Consider the functiong:X→Ydefined by the diagram in Fig. 3-11. That is,
g(x)=
{
f(x) ifx∈Xk\Ykorx∈X\Y
x ifx∈Yk\Xkor x∈B
Thengis one-to-one and onto. ThereforeXY.
Fig. 3-11
SupplementaryProblems
FUNCTIONS
3.27. LetW={a, b, c, d}. Decide whether each set of ordered pairs is a function fromWintoW.
(a) {(b, a), (c, d), (d, a), (c, d) (a, d)} (c) {(a, b), (b, b), (c, d), (d, b)}
(b) {(d, d), (c, a), (a, b), (d, b)} (d) {(a, a), (b, a), (a, b), (c, d)}
3.28. LetV={ 1 , 2 , 3 , 4 }. For the following functionsf:V→Vandg:V→V, find:
(a)f◦g; (b),g◦f; (c)f◦f:
f={( 1 , 3 ), ( 2 , 1 ), ( 3 , 4 ), ( 4 , 3 )} and g={( 1 , 2 ), ( 2 , 3 ),( 3 , 1 ), ( 4 , 1 )}
3.29. Find the composition functionh◦g◦f for the functions in Fig. 3-9.