68 FUNCTIONS AND ALGORITHMS [CHAP. 3
CARDINAL NUMBERS
3.43. Find the cardinal number of each set: (a){x|xis a letter in “BASEBALL”};
(b) Power set ofA={a, b, c, d, e}; (c){x|x^2 = 9 , 2 x= 8 }.
3.44. Find the cardinal number of:
(a) all functions fromA={a, b, c, d}intoB={ 1 , 2 , 3 , 4 , 5 };
(b) all functions fromPintoQwhere|P|=rand|Q|=s;
(c) all relations onA={a, b, c, d};
(d) all relations onPwhere|P|=r.
3.45. Prove:
(a) Every infinite setAcontains a denumerable subsetD.
(b) Each subset of a denumerable set is finite or denumerable.
(c) IfAandBare denumerable, thenA×Bis denumerable.
(e) The setQof rational numbers is denumerable.
3.46. Prove: (a)|A×B|=|B×A|; (b) IfA⊆Bthen|A|≤|B|; (c) If|A|=|B|thenP(A)|=|P(B)|.
SPECIAL FUNCTIONS
3.47. Find:(a) 13. 2 ,− 0. 17 , 34 ;(b) 13. 2 ,− 0. 17 , 34 .
3.48. Find:
(a) 29(mod 6); (c) 5(mod 12); (e)− 555 (mod 11).
(b) 200(mod 20); (d)− 347 (mod 6);
3.49. Find: (a) 3!+ 4 !; (b) 3!( 3 !+ 2 !); (c) 6!/ 5 !; (d) 30!/ 28 !.
3.50. Evaluate: (a) log 2 16; (b) log 3 27; (c) log 100 .01.
MISCELLANEOUS PROBLEMS
3.51. Letnbe an integer. FindL(25) and describe what the functionLdoes whereLis defined by:
L(n)=
{
0ifn= 1
L(n/ 2 )+1ifn> 1
3.52. Letaandbbe integers. FindQ( 2 , 7 ),Q( 5 , 3 ), andQ( 15 , 2 ), whereQ(a, b)is defined by:
Q(a, b)=
{
5ifa<b
Q(a−b, b+ 2 )+a ifa≥b
3.53. Prove: The setPof all polynomialsp(x)=a 0 +a 1 x+···+amxwith integral coefficients (that is, wherea 0 ,a 1 ,...,am
are integers) is denumerable.
Answers to Supplementary Problems
3.27. (a) Yes; (b) No; (c) Yes; (d) No.
3.28. (a){( 1 , 1 ), ( 2 , 4 ), ( 3 , 3 ), ( 4 , 3 )};
(b){( 1 , 1 ), ( 2 , 2 ), ( 3 , 1 ), ( 4 , 1 )};
(c){( 1 , 4 ), ( 2 , 3 ), ( 3 , 3 ), ( 4 , 4 )}.
3.29. {(a, 4 ), (b, 6 ), (c, 4 )}
3.30. (a) No, (b) yes, (c) no, (d) yes.
3.31. (a)f, h; (b)f, h; (c)f, h; (d)g.
3.32. (a)f, g; (b)h; (c) none; (d) none; (e) {all prime
numbers}.
3.33. (a)g, k; (b)f, g, h; (c)g; (d) none.