Substituting Equations (6.34), (6.37), and (6.40) into Equation (6.41) and
letting we obtain
which yields
Continuing in this way we find, for the general term,
Equation (6. 44 ) gives the pmf of X(0,t), the number of arrivals during
time interval [ 0 ,t) subject to the assumptions stated above. It is called the
Poisson distribution, with parameters and t. However, since and t appear in
Equation (6. 44 ) as a product, t, it can be replaced by a single parameter ,
andsowecanalsowrite
Themeanof isgivenbySimilarly,wecanshowthat
ItisseenfromEquation( 6. 46 )thatparameter isequaltotheaverage
numberofarrivalsperunitintervaloftime;thename‘meanrateofarrival’for
,asmentionedearlier,isthusjustified.Indeterminingthevalueofthis
parameterinagivenproblem,itcanbeestimatedfromobservationsby
176 FundamentalsofProbabilityandStatisticsforEngineers
t! 0dp 1
0 ;t
dtp 1
0 ;tet; p 1
0 ; 0 0 ;
6 : 42 p 1
0 ;ttet:
6 : 43 pk
0 ;t
tket
k!; k 0 ; 1 ; 2 ;...:
6 : 44 t,
pk
0 ;t
ke
k!; k 0 ; 1 ; 2 ;...:
6 : 45 X(0,t)EfX
0 ;tgX^1
k 0kpk
0 ;tetX^1
k 0k
tk
k!tetX^1
k 1
tk^1
k 1 !
tetett:6 : 46
^2 X
0 ;tt:
6 : 47 m/n,