Table 7.1
Summary of continuous distributions
Distribution
Probab
ility density function
Parameters
M ean and variance
236 Fundamentals of Probability and Statistics for Engineers
Uniform
fX
"x
)
1
b
a
,
a
x
b
a,
b
>
a
a
b
2
",
b
a)
2
12
Normal "Gaussian)
fX
"x
)
1
"2
)
1/2
exp
"x
m
(^2) )
2
2
,
1
<
x
<
1
m
,>
0
m
,
2
Lognormal
fY
"y
)
1
y
ln
Y
"2
)
1/2
exp
1
2
2 ln
Y
ln
2
y Y
,y
0
Y
0,
ln
Y
0
Y
exp
(^2) ln
Y 2
,
m
2 [ exp "Y
(^2) ln
Y
)
1]
Gamma
fX
"x
)
"
x)
1 exp "
x),
x
0
>
0,
>
0
,
^2
Exponential
fX
"x
)
exp "
x),
x
0
>
0
1
,
(^12)
Chi-squared
fX
"x
)
1
2
/2
"
/2)
"x
/2)
^1
exp "
x
/2),
x
0
positive integer
,2