Fundamentals of Probability and Statistics for Engineers

(John Hannent) #1
The mean and variance of are

We see that is biased but consistent.


Ex ample 9. 17. Let us now determine the MLE of r^2 in Example 9.13. To
carry out this estimation procedure, it is now necessary to determine the pdf of
X giv en by Equation (9.77). Applying techniques developed in Chapter 5, we
can show that X is characterized by the Rice distribution with pdf gi ven by (see
Benedict and Soong,1967)


where I 0 is the modified zeroth-order Bessel function of the first kind.
Given a sample of size n from population X, the likelihood function takes the
form


The MLEs of and and satisfy the likelihood equations


which, upon simplifying, can be written as


and


Parameter Estimation 293


^

Ef^gˆ

Z

0

xf^…x†dxˆ
n
n‡ 1

; … 9 : 114 †

varf^gˆ

Z

0

x

n
n‡ 1



 2

f^…x†dxˆ

n
…n‡ 1 †^2 …n‡ 2 †

"

^2 : … 9 : 115 †

^


fX…x;;^2 †ˆ

x
^2

I 0

^1 =^2 x
^2



exp 

x^2 ‡
2 ^2



; forx 0 ;

0 ; elsewhere;

8

><

>:

… 9 : 116 †


Yn

jˆ 1

fX…xj;;^2 †: … 9 : 117 †

 ^2 ,^ ^2 ,

qlnL
q^

ˆ 0 ; and

qlnL
qb^2

ˆ 0 ; … 9 : 118 †

1

n^^1 =^2

Xn

jˆ 1

xjI 1 …yj†
I 0 …yj†

 1 ˆ 0 ; … 9 : 119 †

b^2 ˆ^1
2

1

n

Xn

jˆ 1

x^2 j^

!

; … 9 : 120 †

b
Free download pdf