Fundamentals of Probability and Statistics for Engineers

(John Hannent) #1

Extreme-value distribution, 226,
type I, 228, 237
type II, 233, 237
type III,234, 237


F a ilure rate, see H a za rd function
F isher–N eyma n fact oriza tion criterion, 275
Frequency diagram, 248
Function of random variables,119, 137
moments, 134
probability distributions, 120


G amma distribution, 212–215, 236
mean, 213, 236
variance, 213, 236
Gaus–Markov theorem, 345
G a ussian dist ribution, see N ormal
distribution
G eometric distribution, 167, 184
mean, 168, 184
variance, 168, 184
G umbel’s extreme value, 228
distribution, 228


Hazard function, 218
Histogram, 248
cumulative, 327
H ypergeometric distribution, 167, 184
mean, 184
variance, 184
H ypothesis t esting, see Test of hypothesis


Independence,19–20
mutual, 18
Interarrival time, 215


Jacobian, 149


Kolmogorov–Smirnov test, 327


Law of large numbers, 96
Least-square estimator, 354–355
covariance, 356
linear unbiased minimum variance, 344
mean, 355
variance, 355
Likelihood equation, 288
Likelihood function, 288
Linear regression, 335
multiple, 354
other models, 357
simple, 335
variance, 343


Lognormal distribution,209–212, 236
mean, 211, 236
variance, 211, 236

M acLaurin series, 99
Markovian property, 27
Markov’s inequality, 115
M a ss function, see Probabilit y m a s s f u n ct io n
Maximum likelihood estimate, 288
Maximum likelihood estimator,288–289
consistency, 289
efficiency, 289
invariance property, 290
M ean, 76–77
conditional, 84
Median, 76
Mode, 78
M oment, 76, 78
central, 79
joint, 87
joint central, 87
Moment estimate, 278
M oment estimator (M E), 278–280
combined, 284
consistency, 279
M oment-generating function, 112, 117
M ultinomial distribution, 172, 184
covariance, 173
mean, 173, 184
variance, 173, 184
M utual exclusiveness, 13

N egative binomial distribution, 169, 184
mean, 171, 184
variance, 171, 184
N ormal distribution, 107, 196–199, 236
bivariate, 111
characteristic function, 198
mean, 198, 236
multivariate, 205
standardized, 201
table, 369
variance, 198, 236
Normal equation, 338
Nuisance parameter, 284

Parameter estimation, 259
interval estimation, 294–295
maximum likelihood method, 287
moment method, 278
point estimation, 277

390 Subject Index

Free download pdf