3.2.2 PROBABILITY MASS FUNCTION FOR DISCRETE RANDOM
VARIABLES
Let be a discrete random variable that assumes at most a countably infinite
number of values 1 2 ,... with nonzero probabilities. If we denote
1, 2,.. ., then, clearly,
1
8
–2 –1 0 1 2 3
x
1
1
2
FX(x)
Figure 3.1 Probability distribution function of for Example 3.1
0.2
1.0
–1 01
FX(x)
x
Figure 3.2 Probability distribution function of a continuous random variable
Random Variables and Probability D istributions 41
X,FX 9 x),
X,FX 9 x)
X
x,x
P 9 Xxi)p 9 xi),i
0 <p
xi 1 ;for all i;
X
i
p
xi 1 :