Problems
3.1 For each of the functions given below, determine constant a so that it possesses all
the properties of a probability distribution function (PD F ). D etermine, in each case,
its associated probability density function (pdf ) orprobability mass function (pmf)
if it exists and sketch all functions.
(a) Case 1:
(b) Case 2:
(c) Case 3:
(d) Case 4:
(e) Case 5:
(f) Case 6:
(g) Case 7:
3.2 For each part of Problem 3.1, determine:
(a) P(X 6);
(b) P(^12 < X 7).
Random Variables and Probability D istributions 67
F
x^0 ; forx<^5 ;
a; forx 5 :
F
x
0 ; forx< 5 ;
1
3
; for 5x< 7 ;
a; forx 7 :
8
><
>:
F
x
0 ; forx< 1 ;
Xk
j 1
1 =aj; forkx<k 1 ;andk 1 ; 2 ; 3 ;...:
8
><
>:
F
x^01 ;eforax;xfor^0 ;x> 0 :
F
x
0 ; forx< 0 ;
xa; for 0x 1 ;
1 ; forx> 1 :
8
<
:
F
x
0 ; forx< 0 ;
asin^1
x
p
; for 0x 1 ;
1 ; forx> 0 :
8
<
:
F
x
0 ; forx< 0 ;
a
1 ex=^2
1
2
; forx 0 :