Fourier and Laplace 437
Is = [2/s+2;8*s/(s^2-9)+1/s];
Vs =inv(Ys)*Is;
disp(‘*********************************’)
disp(‘********* RESULTS ************’)
disp(‘*********************************’)
disp(‘The node voltages V1(s) and V2(s) are: ‘)
disp(‘V1(s)=’),pretty(Vs(1))
disp(‘V2(s)=’),pretty(Vs(2))
disp(‘************************************’)
disp(‘The initial value voltages V1(t=0) and V2(t=0) (in volts)’)
disp(‘using the initial value theorem are verified returning:’)
V1 _ 0 = limit(s*Vs(1),s,inf)
V2 _ 0 = limit(s*Vs(2),s,inf)
disp(‘************************************’)
disp(‘The final value voltages V1(t=inf) and V2(t=inf) (in volts)’)i 1 (t) = 5 Ai 2 (t) = 8 cos(3t) AR 1 = 3 ΩR 2 = 4 ΩR 3 = 9 ΩC1 = 0.5 FL1 = 3 hsw closes at t = 0L2 = 5 Hv 1 (t)v 1 (t)v 2 (t)+
VC1(0) = 4 V
−IL1(0) = 3 AIL2(0) = 2 AFIGURE 4.81
Circuit diagram of Example 12.20.I 1 (s) = 5/sI 2 (s) =R 1 = 3ZC1(S ) = 2/sR2 = 4ZL1(s) = 3 ssw Closes at t = 0ZL2(S) = 5s R3 = 9V 1 (s) V 2 (s)2 A3/s2/s
s^2 +98sFIGURE 4.82
Equivalent s-domain circuit of Figure 4.81.