DTFT, DFT, ZT, and FFT 465
andg(n) → H[f(n)]Thengn H f k n k
K()()( )
∑
, from R.5.16gn
K()() [( )]
∑ fkH n k
andgn()() ( )
fk hn k
K∑
R.5.18 Note that the output of a linear system is given bygn f khn k
n()()( )
∑or in shortg(n) = h(n) ⊗ f(n)Recall that ⊗ denotes convolution.
R.5.19 For example, let f(n) = 2 n and h(n) = (1/3)nu(n). Then g(n) = h(n) ⊗ f(n) orgn f khn k hk f n k
kk()()( ) () ( )
∑∑gn ukkk() ()()nk
(^1)
3
2
∑
gnkknk nkkknk
()
(^1)
3
22 2
1
3
22
1
003
∑∑kk
k01
∑ 2
gn n
kknn
n()
(/)
21
6
2
1
000 116
∑∑∑