DTFT, DFT, ZT, and FFT 471
f. Convolution in timef 1 (n) ⊗ f 2 (n) ↔ F 1 (ejW). F 2 (ejW)g. Convolution in frequencyfnfn 12 Fe 1 jW Fe 2 jW1
2
() ()↔⋅{ ( )⊗( )} Fe Fejjd
^
(^1) W
2
12 () (())
nnn
∫h. Parseval’s theorem is given by
fn Fe dW
n()^221 ( )jW
^2
∑ ∫i. The initial time value is given byfFedW() ( )0jW1
2
∫j. The initial frequency value is given byFej f n
n()^0 ()
∑k. Subtraction of shifted sequencesf(n) − f(n − 1) ↔ [1 − ejW]. F(ejW)R.5.39 A partial list of the most frequently used transform pairs are summarized in
Table 5.1.TABLE 5.1
DTFT Pairs
Time Frequency
f(n) F(e jW)
δ(n) 1
δ(n − n 0 )e−jn^0 W
e−jw 0 n 2 πδ(W − w 0 )
1 2 πδ(W)
cos(w 0 n) π[δ(W + w 0 ) + δ(W − w 0 )]
sin(w 0 n) jπ[δ(W + w 0 ) − δ(W − w 0 )]
u(n) [1/1 − e−jw] + πδ(W)
anu(n) 1/(1 − ae−jW), (|a|< 1)
(a + 1)anu(n) 1/(1 − e−jw)^2 , (|a|< 1)
___________(nn^ !(+k^ k −^ − 1)!1)! anu(n) __________^1
(1 − ae−jW)k
, (|a| < 1)