Time Domain Representation of Continuous and Discrete Signals 65
figure(2);
ut35 = stepfun(t, 2) - stepfun(t, 3);
f5 = f2.*ut35;
t _ 1 = t+1;
f8 = f4 + ut35;
subplot(2,2,1);
plot(t, f5);
axis([1 4 -.1 .2]);
title(‘f5(t) vs t,(Example 1.7)’);
ylabel(‘f5(t)’); grid
subplot(2,2,2);
plot(t, f1+f3); axis([-6 6 -.5 1.5]);
title(‘f6(t) vs t,(Example 1.7)’);
ylabel(‘f5(t)’);grid
subplot(2,2,3);
plot(t _ 1, f5); axis([2 4 -.1 .25]);
title(‘f7(t) vs t,(Example 1.7)’);
ylabel(‘f5(t)’); xlabel(‘t’);;grid
subplot(2,2,4);
plot(t, f8); axis([-6 6 -1.2 1]);
title(‘f8(t) vs t,(Example 1.7)’);
ylabel(‘f5(t)’);xlabel(‘t’); gridThe resulting plots are shown in Figures 1.55 and 1.56.FIGURE 1.55
Plots of f 1 (t), f 2 (t), f 3 (t), and f 4 (t) of Example 1.7.f1(t) versus t, (Example 1.7)f3(t) versus t, (Example 1.7)f2(t) versus t, (Example 1.7)f4(t) versus t, (Example 1.7)112001501005000.50.50.5−0.5−0.5−0.5000f1(t)f3(t)f2(t)f4(t)− 5− 50 − 505 0555− 1
− 5 0
t t