82 Algebra (Equations and inequalities) (Chapter 3)
Example 10 Self Tutor
Solve forx:
3 x+1
x¡ 1
=¡ 2
3 x+1
x¡ 1
=
¡ 2
1
fLCD=x¡ 1 g
)
3 x+1
x¡ 1
=
¡ 2 £(x¡1)
1 £(x¡1)
fto achieve a common denominatorg
) 3 x+1=¡2(x¡1) fequating numeratorsg
) 3 x+1=¡ 2 x+2 fexpanding bracketsg
) 3 x+1+2x=¡ 2 x+2+2x fadding 2 xto both sidesg
) 5 x+1=2
) 5 x+1¡ 1 =2¡ 1 fsubtracting 1 from both sidesg
) 5 x=1
) x=^15 fdividing both sides by 5 g
EXERCISE 3B
1 Solve forx:
a
2 x+3
5
=
1
2
b
x+6
2
=
x
3
c
2 x¡ 11
7
=
3 x
5
d
x+4
2
=
2 x¡ 3
3
e
3 x+2
2
=
x¡ 1
4
f
1 ¡x
2
=
x+2
3
g
x+5
2
=1¡x h
2 x+7
3
=x+4 i
2 x+9
2
=x¡ 8
2 Solve forx:
a
3
x
=
1
5
b
3
x
=
2
3
c
2
7
=
5
x
d
4
9
=
1
x
e
1
2 x
=
4
3
f
7
3 x
=¡ 4 g
4
5 x
=3 h ¡5=
2
3 x
3 Solve forx:
a
3 x¡ 11
4 x
=¡ 2 b
2 x+7
x¡ 4
=¡ 1 c
2 x+1
x¡ 4
=4
d
2 x
x+4
=3 e
¡ 3
2 x¡ 1
=5 f
4 x+1
x+2
=¡ 3
4 Solve forx:
a
x
2
¡
x
6
=4 b
x
4
¡3=
2 x
3
c
x
8
+
x+2
2
=¡ 1
d
x+2
3
+
x¡ 3
4
=1 e
2 x¡ 1
3
¡
5 x¡ 6
6
=¡ 2 f
x
4
=4¡
x+2
3
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_03\082IGCSE01_03.CDR Friday, 12 September 2008 12:19:34 PM PETER