Cambridge International Mathematics

(Tina Sui) #1
82 Algebra (Equations and inequalities) (Chapter 3)

Example 10 Self Tutor


Solve forx:

3 x+1
x¡ 1

=¡ 2

3 x+1
x¡ 1

=

¡ 2

1

fLCD=x¡ 1 g

)

3 x+1
x¡ 1

=

¡ 2 £(x¡1)
1 £(x¡1)

fto achieve a common denominatorg

) 3 x+1=¡2(x¡1) fequating numeratorsg
) 3 x+1=¡ 2 x+2 fexpanding bracketsg
) 3 x+1+2x=¡ 2 x+2+2x fadding 2 xto both sidesg
) 5 x+1=2
) 5 x+1¡ 1 =2¡ 1 fsubtracting 1 from both sidesg
) 5 x=1

) x=^15 fdividing both sides by 5 g

EXERCISE 3B


1 Solve forx:

a

2 x+3
5

=

1

2

b

x+6
2

=

x
3
c

2 x¡ 11
7

=

3 x
5

d
x+4
2

=

2 x¡ 3
3

e
3 x+2
2

=

x¡ 1
4

f
1 ¡x
2

=

x+2
3

g

x+5
2

=1¡x h

2 x+7
3

=x+4 i

2 x+9
2

=x¡ 8

2 Solve forx:

a

3

x

=

1

5

b

3

x

=

2

3

c

2

7

=

5

x

d

4

9

=

1

x

e

1

2 x

=

4

3

f

7

3 x
=¡ 4 g

4

5 x
=3 h ¡5=

2

3 x

3 Solve forx:

a
3 x¡ 11
4 x

=¡ 2 b
2 x+7
x¡ 4

=¡ 1 c
2 x+1
x¡ 4

=4

d

2 x
x+4

=3 e

¡ 3

2 x¡ 1

=5 f

4 x+1
x+2

=¡ 3

4 Solve forx:

a

x
2

¡

x
6

=4 b

x
4

¡3=

2 x
3

c

x
8

+

x+2
2

=¡ 1

d

x+2
3

+

x¡ 3
4
=1 e

2 x¡ 1
3

¡

5 x¡ 6
6
=¡ 2 f

x
4

=4¡

x+2
3

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_03\082IGCSE01_03.CDR Friday, 12 September 2008 12:19:34 PM PETER

Free download pdf