82 Algebra (Equations and inequalities) (Chapter 3)Example 10 Self Tutor
Solve forx:3 x+1
x¡ 1=¡ 2
3 x+1
x¡ 1=
¡ 2
1
fLCD=x¡ 1 g)
3 x+1
x¡ 1=
¡ 2 £(x¡1)
1 £(x¡1)fto achieve a common denominatorg) 3 x+1=¡2(x¡1) fequating numeratorsg
) 3 x+1=¡ 2 x+2 fexpanding bracketsg
) 3 x+1+2x=¡ 2 x+2+2x fadding 2 xto both sidesg
) 5 x+1=2
) 5 x+1¡ 1 =2¡ 1 fsubtracting 1 from both sidesg
) 5 x=1) x=^15 fdividing both sides by 5 gEXERCISE 3B
1 Solve forx:a2 x+3
5=
1
2
bx+6
2=
x
3
c2 x¡ 11
7=
3 x
5d
x+4
2=
2 x¡ 3
3e
3 x+2
2=
x¡ 1
4f
1 ¡x
2=
x+2
3gx+5
2=1¡x h2 x+7
3=x+4 i2 x+9
2=x¡ 82 Solve forx:a3
x=
1
5
b3
x=
2
3
c2
7
=
5
xd4
9
=
1
xe1
2 x=
4
3
f7
3 x
=¡ 4 g4
5 x
=3 h ¡5=2
3 x3 Solve forx:a
3 x¡ 11
4 x=¡ 2 b
2 x+7
x¡ 4=¡ 1 c
2 x+1
x¡ 4=4
d2 x
x+4=3 e¡ 3
2 x¡ 1=5 f4 x+1
x+2=¡ 3
4 Solve forx:ax
2¡
x
6=4 bx
4¡3=
2 x
3cx
8+
x+2
2=¡ 1
dx+2
3+
x¡ 3
4
=1 e2 x¡ 1
3¡
5 x¡ 6
6
=¡ 2 fx
4=4¡
x+2
3IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_03\082IGCSE01_03.CDR Friday, 12 September 2008 12:19:34 PM PETER