Cambridge International Mathematics

(Tina Sui) #1
The theorem of Pythagoras (Chapter 8) 175

Example 6 Self Tutor


Findkiff 9 ,k, 15 gis a Pythagorean triple.

Let 92 +k^2 =15^2 fPythagorasg
) 81 +k^2 = 225
) k^2 = 144
) k=

p
144 fas k> 0 g
) k=12

EXERCISE 8A.2
1 Determine if the following are Pythagorean triples:
a f 8 , 15 , 17 g b f 6 , 8 , 10 g c f 5 , 6 , 7 g
d f 14 , 48 , 50 g e f 1 , 2 , 3 g f f 20 , 48 , 52 g
2 Findkif the following are Pythagorean triples:
a f 8 , 15 ,kg b fk, 24 , 26 g c f 14 ,k, 50 g
d f 15 , 20 ,kg e fk, 45 , 51 g f f 11 ,k, 61 g

3 Explain why there are infinitely many Pythagorean triples of the form f 3 k, 4 k, 5 kg where k 2 Z+.

Discovery Pythagorean triples spreadsheet#endboxedheading


Well known Pythagorean triples include f 3 , 4 , 5 g, f 5 , 12 , 13 g, f 7 , 24 , 25 g
and f 8 , 15 , 17 g.
Formulae can be used to generate Pythagorean triples.

An example is 2 n+1, 2 n^2 +2n, 2 n^2 +2n+1 wherenis a positive integer.
A spreadsheet can quickly generate sets of Pythagorean triples using such formulae.

What to do:
1 Open a new spreadsheet and enter the following:
a in column A, the values ofnfor n=1, 2 , 3 ,
4 , 5 , ......
b in column B, the values of 2 n+1
c in column C, the values of 2 n^2 +2n
d in column D, the values of 2 n^2 +2n+1.

2 Highlight the appropriate formulae andfill downto Row 11
to generate the first 10 sets of triples.
3 Check that each set of numbers is indeed a triple by adding columns to find a^2 +b^2 and c^2.
4 Your final task is to prove that the formulae f 2 n+1, 2 n^2 +2n, 2 n^2 +2n+1g will produce
sets of Pythagorean triples for all positive integer values ofn.
Hint: Let a =2n+1, b =2n^2 +2n and c =2n^2 +2n+1, then simplify
c^2 ¡b^2 =(2n^2 +2n+1)^2 ¡(2n^2 +2n)^2 using thedifference of two squaresfactorisation.

SPREADSHEET

fill down

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_08\175IGCSE01_08.CDR Tuesday, 16 September 2008 11:05:49 AM PETER

Free download pdf