262 Coordinate geometry (Chapter 12)
Example 8 Self Tutor
Find the coordinates of the midpoint of AB for A(¡ 1 ,3)and B(4,7).
x-coordinate of midpoint
=
¡1+4
2
=^32
=1^12
y-coordinate of midpoint
=
3+7
2
=5
) the midpoint of AB is (1^12 ,5).
Example 9 Self Tutor
M is the midpoint of AB. Find the coordinates of B if A is(1,3)and M is(4,¡2).
Let B be(a,b)
)
a+1
2
=4 and
b+3
2
=¡ 2
) a+1=8 and b+3=¡ 4
) a=7 and b=¡ 7
) Bis(7,¡7).
Example 10 Self Tutor
Suppose A is(¡ 2 ,4)and M is(3,¡1), where M is the midpoint of AB.
Useequal stepsto find the coordinates of B.
x-step: ¡ 238
y-step: 4 ¡ 1 ¡ 6
) Bis(8,¡6).
EXERCISE 12C
1 Use this diagram only to find the coordinates of the
midpoint of the line segment:
a GA b ED
c AC d AD
e CD f GF
g EG h GD
You may also be able
to find the midpoint
from a sketch.
A (1, 3)
M (4, 2)-
B( , )ab
y
x
G
F
E
A
C
B
D
3
O 3
+5
+5
-5
-5
A,()-2 ¡4
M,()3 ¡-1
B,()8 -6
+5 +5
¡ 5 ¡ 5
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_12\262IGCSE01_12.CDR Friday, 3 October 2008 12:11:19 PM PETER