Cambridge International Mathematics

(Tina Sui) #1
302 Straight lines (Chapter 14)

Example 3 Self Tutor


Find the equation of a line:
a with gradient 2 andy-intercept 5
b with gradient^23 which passes through(6,¡1).

a m=2and c=5, so the equation is y=2x+5.
b m=^23 so the equation is y=^23 x+c
But when x=6, y=¡ 1 fthe point(6,¡1)lies on the lineg
) ¡1=^23 (6) +c
) ¡1=4+c
) ¡5=c
So, the equation is y=^23 x¡ 5.

Example 4 Self Tutor


Find the equation of a line passing through(¡ 1 ,5) and (3,¡2).

The gradient of the line m=

¡ 2 ¡ 5

3 ¡¡ 1

=¡^74

) the equation is y=¡^74 x+c
But when x=¡ 1 , y=5
) 5=¡^74 (¡1) +c
) 5=^74 +c

)^204 =^74 +c
) c=^134

So, the equation is y=¡^74 x+^134.

EXERCISE 14C
1 Find the equation of a line:
a with gradient 3 andy-intercept¡ 2 b with gradient¡ 4 andy-intercept 8
c with gradient^12 andy-intercept^23 d with gradient¡^23 andy-intercept^34.

2 Find the gradient andy-intercept of a line with equation:
a y=3x+11 b y=¡ 2 x+6 c y=^12 x
d y=¡^13 x¡ 2 e y=3 f x=8

g y=3¡ 2 x h y=¡1+^12 x i y=

3 x+1
2

j y=

2 x¡ 1
3

k y=

1 ¡x
4

l y=

3 ¡ 2 x
5

O

x

y

()-1 ¡5,

()3 -2,

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_14\302IGCSE01_14.CDR Friday, 26 September 2008 11:56:48 AM PETER

Free download pdf