302 Straight lines (Chapter 14)
Example 3 Self Tutor
Find the equation of a line:
a with gradient 2 andy-intercept 5
b with gradient^23 which passes through(6,¡1).
a m=2and c=5, so the equation is y=2x+5.
b m=^23 so the equation is y=^23 x+c
But when x=6, y=¡ 1 fthe point(6,¡1)lies on the lineg
) ¡1=^23 (6) +c
) ¡1=4+c
) ¡5=c
So, the equation is y=^23 x¡ 5.
Example 4 Self Tutor
Find the equation of a line passing through(¡ 1 ,5) and (3,¡2).
The gradient of the line m=
¡ 2 ¡ 5
3 ¡¡ 1
=¡^74
) the equation is y=¡^74 x+c
But when x=¡ 1 , y=5
) 5=¡^74 (¡1) +c
) 5=^74 +c
)^204 =^74 +c
) c=^134
So, the equation is y=¡^74 x+^134.
EXERCISE 14C
1 Find the equation of a line:
a with gradient 3 andy-intercept¡ 2 b with gradient¡ 4 andy-intercept 8
c with gradient^12 andy-intercept^23 d with gradient¡^23 andy-intercept^34.
2 Find the gradient andy-intercept of a line with equation:
a y=3x+11 b y=¡ 2 x+6 c y=^12 x
d y=¡^13 x¡ 2 e y=3 f x=8
g y=3¡ 2 x h y=¡1+^12 x i y=
3 x+1
2
j y=
2 x¡ 1
3
k y=
1 ¡x
4
l y=
3 ¡ 2 x
5
O
x
y
()-1 ¡5,
()3 -2,
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_14\302IGCSE01_14.CDR Friday, 26 September 2008 11:56:48 AM PETER