Cambridge International Mathematics

(Tina Sui) #1
Straight lines (Chapter 14) 309

Example 10 Self Tutor


ABC is an isosceles triangle with AB=AC.
A(0,¡1),B( 5 , 1 ) and C(2,k) are the coordinates of A, B and
C, with k> 0.
a Explain why k=4.
b Find the coordinates of M, the midpoint of line segment BC.
c Show that line segments AM and BC are perpendicular.
d Find the equation of the line of symmetry of triangle ABC.

a

b

c

d

EXERCISE 14F


1aPlot the points A(1,0),B(9,0),C(8,3) and D(2,3).
b Classify the figure ABCD.
c Find the equations of any lines of symmetry of ABCD.

2aPlot the points A(¡ 1 ,2),B(3,2),C(3,¡2) and D(¡ 1 ,¡2).
b Classify the figure ABCD.
c Find the equations of any lines of symmetry of ABCD.
3 P, Q, R and S are the vertices of a rectangle. Given P(1,3),Q(7,3)and S( 1 ,¡2) find:
a the coordinates of R
b the midpoints of line segments PR and QS
c the equations of the lines of symmetry.
d What geometrical fact was verified byb?

O

y

x
A,()0 -1

B,()5 ¡1

C,()2 ¡k

M

Since AB=AC,

p
(5¡0)^2 +(1¡¡1)^2 =

p
(2¡0)^2 +(k¡¡1)^2
)

p
25 + 4 =

p
4+(k+1)^2
) (k+1)^2 =25
) k+1=§ 5
) k=4or ¡ 6
But k> 0 ,sok=4.

The midpoint of BC is M

¡5+2
2 ,

1+4
2

¢
.
So, M is

¡ 7
2 ,

5
2

¢
:

gradient of BC=

4 ¡ 1

2 ¡ 5

=¡^33

=¡ 1

gradient of AM=

5
2 ¡¡^1
7
2 ¡^0

=

7
2
7
2
=1

As these gradients are
negative reciprocals of
each other, AM?BC.

The line of symmetry is AM.
Its gradient m=1and itsy-intercept c=¡ 1.
) its equation is y=x¡ 1.

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_14\309IGCSE01_14.CDR Friday, 17 October 2008 9:50:12 AM PETER

Free download pdf