Straight lines (Chapter 14) 309
Example 10 Self Tutor
ABC is an isosceles triangle with AB=AC.
A(0,¡1),B( 5 , 1 ) and C(2,k) are the coordinates of A, B and
C, with k> 0.
a Explain why k=4.
b Find the coordinates of M, the midpoint of line segment BC.
c Show that line segments AM and BC are perpendicular.
d Find the equation of the line of symmetry of triangle ABC.
a
b
c
d
EXERCISE 14F
1aPlot the points A(1,0),B(9,0),C(8,3) and D(2,3).
b Classify the figure ABCD.
c Find the equations of any lines of symmetry of ABCD.
2aPlot the points A(¡ 1 ,2),B(3,2),C(3,¡2) and D(¡ 1 ,¡2).
b Classify the figure ABCD.
c Find the equations of any lines of symmetry of ABCD.
3 P, Q, R and S are the vertices of a rectangle. Given P(1,3),Q(7,3)and S( 1 ,¡2) find:
a the coordinates of R
b the midpoints of line segments PR and QS
c the equations of the lines of symmetry.
d What geometrical fact was verified byb?
O
y
x
A,()0 -1
B,()5 ¡1
C,()2 ¡k
M
Since AB=AC,
p
(5¡0)^2 +(1¡¡1)^2 =
p
(2¡0)^2 +(k¡¡1)^2
)
p
25 + 4 =
p
4+(k+1)^2
) (k+1)^2 =25
) k+1=§ 5
) k=4or ¡ 6
But k> 0 ,sok=4.
The midpoint of BC is M
¡5+2
2 ,
1+4
2
¢
.
So, M is
¡ 7
2 ,
5
2
¢
:
gradient of BC=
4 ¡ 1
2 ¡ 5
=¡^33
=¡ 1
gradient of AM=
5
2 ¡¡^1
7
2 ¡^0
=
7
2
7
2
=1
As these gradients are
negative reciprocals of
each other, AM?BC.
The line of symmetry is AM.
Its gradient m=1and itsy-intercept c=¡ 1.
) its equation is y=x¡ 1.
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_14\309IGCSE01_14.CDR Friday, 17 October 2008 9:50:12 AM PETER