Cambridge International Mathematics

(Tina Sui) #1
Trigonometry (Chapter 15) 317

FINDING TRIGONOMETRIC RATIOS


Example 3 Self Tutor


For the given triangle find
sinμ,cosμandtanμ:

sinμ=

OPP

HYP

=^45

cosμ=

ADJ

HYP

=^35

tanμ=

OPP

ADJ

=^43

FINDING SIDES


In a right angled triangle, if we are given another angle and a side we can find:
² the third angle using the ‘angle sum of a triangle is 180 o’
² the other sides using trigonometry.

Step 1: Redraw the figure and mark on it HYP, OPP, ADJ relative to the given angle.
Step 2: Choose the correct trigonometric ratio and use it to set up an equation.
Step 3: Solve to find the unknown.

Example 4 Self Tutor


Find the unknown length in the following triangles:
ab

a Now sin 61o=

x
9 : 6

fsinμ=

OPP

HYP

g

) sin 61o£ 9 :6=x f£both sides by 9 : 6 g
) x¼ 8 : 40 fSIN 61 ) £ 9 : 6 ENTERg
The length of the side is about 8 : 40 cm.

b Now tan 41o=

7 : 8

x

ftanμ=

OPP

ADJ

g

) x£tan 41o=7: 8 f£both sides byxg

) x=

7 : 8

tan 41o

f¥both sides by tan 41og

) x¼ 8 : 97 f 7 : 8 ¥ TAN 41 ) ENTERg
The length of the side is about 8 : 97 m.

3cm

4cm

5cm

q

q

OPP

HYP ADJ

xcm

61° 9.6 cm

HYP

OPP

ADJ

xcm

61° 9.6 cm

7.8 m xm
41°

HYP

OPP ADJ
7.8 m xm
41°

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_15\317IGCSE01_15.CDR Friday, 26 September 2008 2:41:28 PM PETER

Free download pdf