Cambridge International Mathematics

(Tina Sui) #1
Trigonometry (Chapter 15) 319

de f

gh i

jk l

4 Findallthe unknown angles and sides of:
abc

FINDING ANGLES


In the right angled triangle shown, sinμ=^35 :

So, we are looking for the angleμwith a sine of^35.
If sin¡^1 (::::::) reads “the angle with a sine of ......”, we can write μ= sin¡^1

¡ 3
5

¢
.
Another way of describing this is to say “μis theinverse sineof^35 ”.

If sinμ=x thenμis theinverse sineofx.

You can find graphics calculator instructions for finding these inverse trigonometric functions on page 16.

We can defineinverse cosineandinverse tangentin a similar way.

Example 5 Self Tutor


Find the measure of the angle markedμin:
ab

28°
xm
52 m 68°

xkm
45 km

74°

xcm

80 cm

27°

xmm

11 mm

42°
xkm

5km

70°
xcm

5.6 cm 50°
xm 27 m
49°

xkm

12 km

34°
8m xm

q

28°
bcm
12 cm

acm

am bm

15 m

63°

q

25°
acm

45 cm bcm

q

q

5cm
3cm

HYP
OPP

7m

4m
q

2.67 km
5.92 km
q

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_15\319IGCSE01_15.CDR Friday, 26 September 2008 2:52:08 PM PETER

Free download pdf