Trigonometry (Chapter 15) 319
de f
gh i
jk l
4 Findallthe unknown angles and sides of:
abc
FINDING ANGLES
In the right angled triangle shown, sinμ=^35 :
So, we are looking for the angleμwith a sine of^35.
If sin¡^1 (::::::) reads “the angle with a sine of ......”, we can write μ= sin¡^1
¡ 3
5
¢
.
Another way of describing this is to say “μis theinverse sineof^35 ”.
If sinμ=x thenμis theinverse sineofx.
You can find graphics calculator instructions for finding these inverse trigonometric functions on page 16.
We can defineinverse cosineandinverse tangentin a similar way.
Example 5 Self Tutor
Find the measure of the angle markedμin:
ab
28°
xm
52 m 68°
xkm
45 km
74°
xcm
80 cm
27°
xmm
11 mm
42°
xkm
5km
70°
xcm
5.6 cm 50°
xm 27 m
49°
xkm
12 km
34°
8m xm
q
28°
bcm
12 cm
acm
am bm
15 m
63°
q
25°
acm
45 cm bcm
q
q
5cm
3cm
HYP
OPP
7m
4m
q
2.67 km
5.92 km
q
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_15\319IGCSE01_15.CDR Friday, 26 September 2008 2:52:08 PM PETER