348 Algebraic fractions (Chapter 16)
3 Simplify:
a
x
3
+2 b
m
2
¡ 1 c
a
3
+a d
b
5
¡ 2
e
x
6
¡ 3 f 3+
x
4
g 5 ¡
x
6
h 2+
3
x
i 6 ¡
3
x
j b+
3
b
k
5
x
+x l
y
6
¡ 2 y
4 Simplify:
a
x
3
+
3 x
5
b
3 x
5
¡
2 x
7
c
5
a
+
1
2 a
d
6
y
¡
3
4 y
e
3
b
+
4
c
f
5
4 a
¡
6
b
g
x
10
+3 h 4 ¡
x
3
Addition and subtraction of more complicated algebraic fractions can be made relatively straightforward if
we adopt a consistent approach.
For example:
x+2
3
+
5 ¡ 2 x
2
=
2
2
μ
x+2
3
¶
+
3
3
μ
5 ¡ 2 x
2
¶
fachieves LCD of 6 g
=
2(x+2)
6
+
3(5¡ 2 x)
6
fsimplify each fractiong
We can then write the expression as a single fraction and simplify the numerator.
Example 12 Self Tutor
Write as a single fraction: a
x
12
+
x¡ 1
4
b
x¡ 1
3
¡
x+2
7
a
x
12
+
x¡ 1
4
=
x
12
+
3
3
μ
x¡ 1
4
¶
=
x+3(x¡1)
12
=
x+3x¡ 3
12
=
4 x¡ 3
12
b
x¡ 1
3
¡
x+2
7
=
7
7
μ
x¡ 1
3
¶
¡
3
3
μ
x+2
7
¶
=
7(x¡1)
21
¡
3(x+2)
21
=
7(x¡1)¡3(x+2)
21
=
7 x¡ 7 ¡ 3 x¡ 6
21
=
4 x¡ 13
21
D MORE COMPLICATED FRACTIONS [2.9]
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_16\348IGCSE01_16.CDR Thursday, 2 October 2008 1:57:07 PM PETER