398 Introduction to functions (Chapter 19)
THE GRAPH OF y=jax+bj
One way of graphing y=jax+bj is to first graph y=ax+b.
Whatever part of the graph is below thex-axis we then reflect in thex-axis.
Example 9 Self Tutor
Graph y=j 2 x¡ 3 j. Comment on any symmetry in the graph.
We begin by graphing y=2x¡ 3.
x 0 1 2
y ¡ 3 ¡ 1 1
The graph cuts thex-axis when y=0.
) 2 x¡3=0
) x=^32
To obtain the graph of y=j 2 x¡ 3 j we
reflect all points withx<^32 in thex-axis.
x=^32 is a vertical line of symmetry.
EXERCISE 19F.2
1 Sketch the graphs of:
a f(x)=jx+1j b f(x)=jx¡ 1 j c f(x)=j 2 x¡ 1 j
d f(x)=j 4 ¡xj e f(x)=j 2 ¡ 3 xj f f(x)= j 3 x+2j
2 What is the equation of the line of symmetry of f(x)=jax+bj?
3 Find the function f(x)=jax+bj which has the graph:
abc
Review set 19A
#endboxedheading
1 For these functions, find the domain and range:
ab c
x
-3
y
O Ew_Ew_
3
2
x=^3
y= 2 x- 3
y
x
()-4 ¡4,
()3 -2,
O
y
x
()-5 -145,
()-2 ¡44,
()3 -81,
O
y
x
O
O
y
2 x
2 yx¡=¦()
O
y
-1 x
2
y¡=¦()x
O
y
-2 x
1
y¡=¦()x
¡
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_19\398IGCSE01_19.CDR Friday, 10 October 2008 10:21:49 AM PETER