Cambridge International Mathematics

(Tina Sui) #1
398 Introduction to functions (Chapter 19)

THE GRAPH OF y=jax+bj


One way of graphing y=jax+bj is to first graph y=ax+b.
Whatever part of the graph is below thex-axis we then reflect in thex-axis.

Example 9 Self Tutor


Graph y=j 2 x¡ 3 j. Comment on any symmetry in the graph.

We begin by graphing y=2x¡ 3.

x 0 1 2
y ¡ 3 ¡ 1 1

The graph cuts thex-axis when y=0.

) 2 x¡3=0
) x=^32

To obtain the graph of y=j 2 x¡ 3 j we
reflect all points withx<^32 in thex-axis.

x=^32 is a vertical line of symmetry.

EXERCISE 19F.2
1 Sketch the graphs of:
a f(x)=jx+1j b f(x)=jx¡ 1 j c f(x)=j 2 x¡ 1 j
d f(x)=j 4 ¡xj e f(x)=j 2 ¡ 3 xj f f(x)= j 3 x+2j
2 What is the equation of the line of symmetry of f(x)=jax+bj?
3 Find the function f(x)=jax+bj which has the graph:
abc

Review set 19A
#endboxedheading

1 For these functions, find the domain and range:
ab c

x

-3

y

O Ew_Ew_

3

2
x=^3

y= 2 x- 3

y

x

()-4 ¡4,

()3 -2,

O

y

x

()-5 -145,

()-2 ¡44,

()3 -81,

O

y

x
O

O

y

2 x

2 yx¡=¦()

O

y

-1 x

2

y¡=¦()x

O

y

-2 x

1

y¡=¦()x

¡

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_19\398IGCSE01_19.CDR Friday, 10 October 2008 10:21:49 AM PETER

Free download pdf