Transformation geometry (Chapter 20) 403If P(x,y) istranslatedhunits in thex-direction andkunits
in they-direction to become P^0 (x^0 ,y^0 ), then x^0 =x+hand
y^0 =y+k:We write P(x,y)¡h
k¢
¡¡!P^0 (x+h,y+k)where P^0 is called theimageof the object P and
¡h
k¢
is called thetranslation vector.x^0 =x+h
y^0 =y+k)
are called thetransformation equations.Example 1 Self Tutor
Triangle OAB with vertices O(0,0),A(2,3)and B(¡ 1 ,2)is translated¡ 3
2¢
.Find the image vertices and illustrate the object and image.O( 0 , 0 )
¡ 3
2¢
¡¡!O^0 ( 3 , 2 )
A( 2 , 3 )
¡ 3
2¢
¡¡!A^0 ( 5 , 5 )
B(¡ 1 , 2 )
¡ 3
2¢
¡¡!B^0 ( 2 , 4 )
Example 2 Self Tutor
On a set of axes draw the line with equation y=^12 x+1.Find the equation of the image when the line is translated through¡ 3
¡ 1¢
:Under a translation, the image of a line is a parallel
line, and so will have the same gradient.) the image of y=^12 x+1has the form
y=^12 x+c.The object contains the point(0,1) since the
y-intercept is 1.Since (0,1)¡ 3
¡ 1¢
¡¡¡!(3,0),(3,0)lies on the image.) 0=^12 (3) +c
) c=¡^32) the equation of the image is y=^12 x¡^32.yx
55
A
BOO'A'
B'yxyk¡+¡yxxh¡+¡P,()xy¡P'()xy'',¡hk³
h
ḱOOyx& 1 *
3objectimage()0 ¡1,()3 ¡0,
2
1
2
y=^1 x- 12
y=^1 x+ 1IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_20\403IGCSE01_20.CDR Friday, 3 October 2008 3:33:14 PM PETER