Transformation geometry (Chapter 20) 403
If P(x,y) istranslatedhunits in thex-direction andkunits
in they-direction to become P^0 (x^0 ,y^0 ), then x^0 =x+hand
y^0 =y+k:
We write P(x,y)
¡h
k
¢
¡¡!
P^0 (x+h,y+k)
where P^0 is called theimageof the object P and
¡h
k
¢
is called thetranslation vector.
x^0 =x+h
y^0 =y+k
)
are called thetransformation equations.
Example 1 Self Tutor
Triangle OAB with vertices O(0,0),A(2,3)and B(¡ 1 ,2)is translated
¡ 3
2
¢
.
Find the image vertices and illustrate the object and image.
O( 0 , 0 )
¡ 3
2
¢
¡¡!
O^0 ( 3 , 2 )
A( 2 , 3 )
¡ 3
2
¢
¡¡!
A^0 ( 5 , 5 )
B(¡ 1 , 2 )
¡ 3
2
¢
¡¡!
B^0 ( 2 , 4 )
Example 2 Self Tutor
On a set of axes draw the line with equation y=^12 x+1.
Find the equation of the image when the line is translated through
¡ 3
¡ 1
¢
:
Under a translation, the image of a line is a parallel
line, and so will have the same gradient.
) the image of y=^12 x+1has the form
y=^12 x+c.
The object contains the point(0,1) since the
y-intercept is 1.
Since (0,1)
¡ 3
¡ 1
¢
¡¡¡!
(3,0),(3,0)lies on the image.
) 0=^12 (3) +c
) c=¡^32
) the equation of the image is y=^12 x¡^32.
y
x
5
5
A
B
O
O'
A'
B'
y
x
yk¡+¡
y
xxh¡+¡
P,()xy¡
P'()xy'',¡
h
k
³
h
k
́
O
O
y
x
& 1 *
3
object
image
()0 ¡1,
()3 ¡0,
2
1
2
y=^1 x- 1
2
y=^1 x+ 1
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_20\403IGCSE01_20.CDR Friday, 3 October 2008 3:33:14 PM PETER