Transformation geometry (Chapter 20) 405
Example 3 Self Tutor
Find the image of the point(3,1)under a rotation about O(0,0)which is:
a 90 oanticlockwise b 90 oclockwise c 180 o:
a (3,1)! (¡ 1 ,3)
b (3,1)! (1,¡3)
c (3,1)! (¡ 3 ,¡1)
Example 4 Self Tutor
Triangle ABC has vertices A(¡ 1 ,2),B(¡ 1 ,5) and C(¡ 3 ,5). It is rotated
clockwise through 90 oabout(¡ 2 ,0). Draw the image of triangle ABC and
label it A^0 B^0 C^0.
A(¡ 1 ,2) !A^0 (0,¡1)
B(¡ 1 ,5)! B^0 (3,¡1)
C(¡ 3 ,5)! C^0 (3,1)
Example 5 Self Tutor
Find the image equation of the line 2 x¡ 3 y=¡ 6 under a clockwise rotation about O(0,0)
through 90 o.
2 x¡ 3 y=¡ 6
hasx-intercept¡ 3 (when y=0)
andy-intercept 2 (when x=0)
We hence graph 2 x¡ 3 y=¡ 6 fdashedg
Next we rotate these intercepts clockwise through 90 o.
The image hasx-intercept 2 andy-intercept 3.
The gradient of the image is m=¡^32 and the
y-intercept c=3.
) the image equation is y=¡^32 x+3.
y
x
(3'\\1)
(1'-3)
(-1'\\3)
(-3'\-1)
O
DEMO
y
O x
-4 -2 2 4
-2
2
4
6
centre
()-2 ¡0,
CB
A
A' B'
C'
y
x
-3 2
2
3
2!-3@=-6
y=- 23 x+ 3
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_20\405IGCSE01_20.CDR Thursday, 16 October 2008 2:55:13 PM PETER