414 Transformation geometry (Chapter 20)What to do:
1 On the same set of axes graph:a y=1
xb y=1
x+2 c y=1
x¡ 3 dWhat transformation maps y=1
x
onto y=1
x
+k?2 On the same set of axes graph:a y=1
xb y=1
x+2c y=1
x¡ 3d y=1
x+4What transformation maps y=1
xonto y=1
x+k?
You should have discovered that:
² y=f(x) maps onto y=f(x)+k under avertical translationof¡ 0
k¢² y=f(x) maps onto y=f(x+k) under ahorizontal translationof¡¡k
0¢² y=f(x) maps onto y=kf(x) under a stretch with invariantx-axis and scale factork.Example 11 Self Tutor
Consider f(x)=^12 x+1. On separate sets of axes graph:
a y=f(x) and y=f(x+2) b y=f(x) and y=f(x)+2
c y=f(x) and y=2f(x) d y=f(x) and y=¡f(x)abcdOyx-2-211
-2-2-2 yx¡=¡¦()yx¡=¡¦ ¡+¡2()22Oy-2 x+2^11
+2+2+2yx¡=¡¦()yx¡=¡¦()¡+¡233Oyx11
-2-2yx¡=¡¦()yx¡=¡2¦()22Oyx11
-2-2
-1-1yx¡=¡¦()yx¡=¡-¦()y=1
x+5
3 On the same set of axes graph:a y=1
xb y=2
xc y=3
xd y=¡ 1
xe y=¡ 4
xWhat transformation maps y=1
xonto y=k
x?
IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_20\414IGCSE01_20.CDR Tuesday, 18 November 2008 10:59:24 AM PETER