y
x
+ 2
- 3
@\=\-(!\-\2)X\-\3
@\=\-!X
@\=\!X
()2 -3,
OO
x
y
@\=\!X
@\=\3!X
@\=\-3!X
OO
Example 13 Self Tutor
Sketch y=x^2 on a set of axes and hence sketch:
a y=3x^2 b y=¡ 3 x^2
a y=3x^2 is ‘thinner’ thany=x^2 :
b y=¡ 3 x^2 is the same shape as
y=3x^2 but opens downwards.
Example 14 Self Tutor
Sketch the graph of y=¡(x¡2)^2 ¡ 3 from the graph of y=x^2 and
hence state the coordinates of its vertex.
y=¡(x¡2)^2 ¡ 3
reflect in
x-axis
horizontal shift
2 units right
vertical shift
3 units down
The vertex is at(2,¡3).
Consider the quadratic function y=3(x¡1)^2 +2.
y=3(x¡1)^2 +2
a=3 h=1 k=2
This graph has the same shape as the graph of
y=3x^2 but with vertex ( 1 , 2 ).
On expanding: y=3(x¡1)^2 +2
) y=3(x^2 ¡ 2 x+1)+2
) y=3x^2 ¡ 6 x+3+2
) y=3x^2 ¡ 6 x+5
From this we can see that:
the graph of a quadratic of the form y=ax^2 +bx+c has the same shape as the graph of y=ax^2.
x
y
@\=\3(!\-\1)X\+\2
@\=\3!X V(1'\2)
5
O
436 Quadratic equations and functions (Chapter 21)
GRAPHS WHEN THE LEADING COEFFICIENT 6 =1
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_21\436IGCSE01_21.CDR Tuesday, 18 November 2008 12:03:49 PM PETER