Cambridge International Mathematics

(Tina Sui) #1
y

x
+ 2


  • 3


@\=\-(!\-\2)X\-\3

@\=\-!X

@\=\!X

()2 -3,

OO

x

y
@\=\!X

@\=\3!X

@\=\-3!X

OO

Example 13 Self Tutor


Sketch y=x^2 on a set of axes and hence sketch:
a y=3x^2 b y=¡ 3 x^2

a y=3x^2 is ‘thinner’ thany=x^2 :
b y=¡ 3 x^2 is the same shape as
y=3x^2 but opens downwards.

Example 14 Self Tutor


Sketch the graph of y=¡(x¡2)^2 ¡ 3 from the graph of y=x^2 and
hence state the coordinates of its vertex.

y=¡(x¡2)^2 ¡ 3

reflect in
x-axis

horizontal shift
2 units right

vertical shift
3 units down
The vertex is at(2,¡3).

Consider the quadratic function y=3(x¡1)^2 +2.

y=3(x¡1)^2 +2

a=3 h=1 k=2

This graph has the same shape as the graph of
y=3x^2 but with vertex ( 1 , 2 ).

On expanding: y=3(x¡1)^2 +2
) y=3(x^2 ¡ 2 x+1)+2
) y=3x^2 ¡ 6 x+3+2
) y=3x^2 ¡ 6 x+5

From this we can see that:

the graph of a quadratic of the form y=ax^2 +bx+c has the same shape as the graph of y=ax^2.

x

y

@\=\3(!\-\1)X\+\2

@\=\3!X V(1'\2)

5

O

436 Quadratic equations and functions (Chapter 21)

GRAPHS WHEN THE LEADING COEFFICIENT 6 =1


IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_21\436IGCSE01_21.CDR Tuesday, 18 November 2008 12:03:49 PM PETER

Free download pdf