Cambridge International Mathematics

(Tina Sui) #1

Example 24 Self Tutor


Find the quadratic function with:
a vertex(1,2)andy-intercept 3 b vertex(2,11)which passes through the point(¡ 1 ,¡7).

a As h=1and k=2,
f(x)=a(x¡1)^2 +2
But f(0) = 3
) a(¡1)^2 +2=3
) a+2=3
) a=1
So, f(x)=(x¡1)^2 +2
or f(x)=x^2 ¡ 2 x+3
fin expanded formg

b As h=2and k=11,
f(x)=a(x¡2)^2 +11
But f(¡1) =¡ 7
) a(¡3)^2 +11=¡ 7
) 9 a+11=¡ 7
) 9 a=¡ 18
) a=¡ 2
So, f(x)=¡2(x¡2)^2 +11
or f(x)=¡2(x^2 ¡ 4 x+4)+11
=¡ 2 x^2 +8x+3

Example 25 Self Tutor


The graph of a quadratic function hasx-intercepts¡^52 and^13 , and it passes
through(1,42). Find the function.

Thex-intercept¡^52 comes from the linear factor x+^52 or 2 x+5

Thex-intercept^13 comes from the linear factor x¡^13 or 3 x¡ 1

) f(x)=a(2x+ 5)(3x¡1)

But f(1) = 42,soa(7)(2) = 42
) 14 a=42
) a=3

Thus f(x) = 3(2x+ 5)(3x¡1)

EXERCISE 21H


In questions 1
and 2 we are
given that
a=1.

1 If f(x)=x^2 +bx+c, find f(x) given that its vertex is at:
a (1,3) b (0,2) c (3,0) d (¡ 3 ,¡2) e (^12 ,1)

2 If f(x)=x^2 +bx+c, find f(x) given that it hasx-intercepts:
a 0 and 2 b ¡ 4 and 1 c ¡ 5 and 2 d ¡ 7 and 0.

H FINDING A QUADRATIC FUNCTION [3.3, 3.4]


.

.

Having studied the graphs and properties of quadratics in some detail, we should be able to use facts about
a graph to determine the corresponding function.

Quadratic equations and functions (Chapter 21) 445

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_21\445IGCSE01_21.CDR Monday, 27 October 2008 2:10:02 PM PETER

Free download pdf