y
-2 x
12
2
O
@\=Qw_\(!\+\2)(!\-\1)(!\-2)
y
O 2 x
@\=\2!(!-2)X
² for a cubic in the form y=a(x¡®)^2 (x¡ ̄) the graphtouchesthex-axis at®andcutsit at ̄
² cubic functions have apoint of rotational symmetrycalled thepoint of inflection.
Example 1 Self Tutor
Use axes intercepts only to sketch the graphs of:
a f(x)=^12 (x+ 2)(x¡1)(x¡2) b f(x)=2x(x¡2)^2
a f(x)=^12 (x+ 2)(x¡1)(x¡2)
hasx-intercepts¡ 2 , 1 , and 2
f(0) =^12 (2)(¡1)(¡2) = 2
) they-intercept is 2
b f(x)=2x(x¡2)^2
cuts thex-axis when x=0and
touches thex-axis when x=2
f(0) = 2(0)(¡2)^2 =0
) they-intercept is 0
EXERCISE 23A.1
1 By expanding out the following, show that they are cubic functions.
a f(x)=(x+ 3)(x¡2)(x¡1) b f(x)=(x+ 4)(x¡1)(2x+3)
c f(x)=(x+2)^2 (2x¡5) d f(x)=(x+1)^3 +2
2 Use axes intercepts only to sketch the graphs of:
a y=(x+ 1)(x¡2)(x¡3) b y=¡2(x+ 1)(x¡2)(x¡^12 )
c y=^12 x(x¡4)(x+3) d y=2x^2 (x¡3)
e y=¡^14 (x¡2)^2 (x+1) f y=¡3(x+1)^2 (x¡^23 )
FINDING A CUBIC FUNCTION
If we are given the graph of a cubic with sufficient information, we can determine the form of the function.
We do this using the same techniques we used for quadratic functions.
Example 2 Self Tutor
Find the form of the cubic with graph:
aby
-1 x
-8
24
O
y
-3 x
6
O We_
Further functions (Chapter 23) 471
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_23\471IGCSE01_23.CDR Monday, 27 October 2008 2:18:31 PM PETER