5 For these functions:
i Use your graphics calculator to obtain a sketch of the function.
ii State the equations of any asymptotes.
iii Find the axes intercepts.
iv Find and classify any turning points.
a f(x)=
4
x¡ 2
b f(x)=2¡
3
x+1
c f(x)=2x¡ 3
d f(x)=2x+
1
x
e f(x)=
4 x
x^2 ¡ 4 x¡ 5
f f(x)=3¡x+2
g f(x)=
x^2 ¡ 1
x^2 +1
h f(x)=
x^2 +1
x^2 ¡ 1
i f(x)=
2 x+3
2 x+1
6 Consider f(x)=2x¡x^2
a Find the values of f(x) for x=¡ 2 ,¡ 1 , 0 , 1 , 2 , 3 , 4 , 5.
b Useato set a suitable window on your graphics calculator
and hence obtain a sketch graph for f(x) on ¡ 26 x 65.
c Find the zeros of f(x).
d Find the turning points of f(x).
x f(x) g(x) h(x)
¡ 2
¡ 1 : 5
¡ 0 : 5
0
0 : 5
1
2
2 : 7
3 : 61
7 If f(x)=2x, g(x)=x^2 ¡ 1 and h(x)=
x¡ 1
2 x+1
,
copy and complete, giving answers correct to 3 decimal places
where necessary.
8aUse your graphics calculator to draw, on the same axes,
the functions f(x)=x¡
1
x
and g(x)=2¡x¡ 1.
b State the equations of the asymptotes of f(x).
c Find the coordinates of any points where y=f(x) and y=g(x) meet.
9 Consider f(x)=
x^2 +4
x^2 +1
:
a Sketch the graph of y=f(x).
b Find the domain and range of f(x).
c Write down the equations of any asymptotes of y=f(x).
d Find the coordinates of any points where y=f(x) meets y=5.
e Suppose y=f(x) meets y=k at exactly two points.
What possible values couldkhave?
Did you notice in
that vertical
asymptotes can be
found by letting the
denominator be? 0
5
Further functions (Chapter 23) 477
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_23\477IGCSE01_23.CDR Monday, 27 October 2008 2:18:48 PM PETER