Cambridge International Mathematics

(Tina Sui) #1
Review set 23A
#endboxedheading

1 Sketch the graphs of the following cubics, showing all axes intercepts:
a y=x(x¡2)(x+3) b y=¡2(x+1)^2 (x¡3)

2 Find the form of the cubic function which has:
a x-intercept¡ 1 , 0 and 2 and y-intercept 6
b x-intercepts 1 and 4 ,y-intercept¡ 4 , and passes through(3,¡4):

3

4 Find the inverse function of: a f(x)=4x¡ 1 b g(x)=

1

x+3

5 For the function f(x)=

2 x¡ 5
3

:

a find f¡^1 (x)
b sketch y=f(x), y=f¡^1 (x) and y=x on the same axes.

6 Solve forx, correct to 3 significant figures:
a 7 x=50 b 5 x^3 ¡

p
x=12 c 3 x^2 ¡5=2¡x

7 Find the coordinates of the points of intersection for:

aby=6¡ 2 x and y=(x¡3)^2 ¡

1

p
x

8 Suppose f(x)=
x^2 +4
x^2 ¡ 1

:

a Use technology to sketch the graph of y=f(x):
b Find the equations of the three asymptotes.
c Find the domain and range of f(x).

d If

x^2 +4
x^2 ¡ 1

=k has 2 solutions, find the range of possible values ofk.

9 Find, as accurately as possible, the gradient of the tangent to y=

4

x

at the point(2,2):

Review set 23B
#endboxedheading

1 Use axes intercepts to sketch the graphs of:
a y=(x+ 3)(x¡4)(x¡2) b y=3x^2 (x+2)

y

x

-1 O

-6

3

Find the equation of the cubic with
graph given alongside.
Give your answer in factor form and
in expanded form.

y=(1:5)¡x and y=2x^2 ¡ 7

Further functions (Chapter 23) 481

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_23\481IGCSE01_23.CDR Monday, 27 October 2008 2:18:59 PM PETER

Free download pdf