Cambridge International Mathematics

(Tina Sui) #1
We can now check the results ofExample 13algebraically:

Ina, 2 r+s=2

μ
3
2


+

μ
2
¡ 2


=

μ
6
4


+

μ
2
¡ 2


=

μ
8
2


and inb, r¡ 2 s=

μ
3
2


¡ 2

μ
2
¡ 2


=

μ
3
2


¡

μ
4
¡ 4


=

μ
¡ 1
6


Example 14 Self Tutor


Draw sketches of any two vectorspandqsuch that: a p=2q b p=¡^12 q.

Letqbe ab

EXERCISE 24F


1 For r=

μ
2
3


and s=

μ
4
¡ 2


, find geometrically:

a 2 r b ¡ 3 s c^12 r d r¡ 2 s
e 3 r+s f 2 r¡ 3 s g^12 s+r h^12 (2r+s)

2 Check your answers to 1 using component form arithmetic.
3 Draw sketches of any two vectorspandqsuch that:
a p=q b p=¡q c p=3q d p=^34 q e p=¡^32 q

4 For p=

μ
3
1


and q=

μ
¡ 2
3


, find r=

μ
x
y


such that:

a r=p¡ 3 q b p+r=q c q¡ 3 r=2p d p+2r¡q= 0
5 Ifais any vector, prove that jkaj=jkjjaj: Hint: Writeain component form.

Two vectors areparallelif one is a scalar multiple of the other.
If two vectors are parallel then one vector is a scalar multiple of the other.

Ifais parallel tobthen we write akb.

Thus, ² if a=kb for some non-zero scalark, then akb
² if akb there exists a non-zero scalarksuch that a=kb.

G PARALLEL VECTORS [5.1, 5.2]


q q q

p q p

a
b

Vectors (Chapter 24) 497

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_24\497IGCSE01_24.CDR Monday, 27 October 2008 2:27:10 PM PETER

Free download pdf