We can now check the results ofExample 13algebraically:Ina, 2 r+s=2μ
3
2¶
+μ
2
¡ 2¶=
μ
6
4¶
+μ
2
¡ 2¶=
μ
8
2¶and inb, r¡ 2 s=μ
3
2¶
¡ 2μ
2
¡ 2¶=
μ
3
2¶
¡μ
4
¡ 4¶=
μ
¡ 1
6¶Example 14 Self Tutor
Draw sketches of any two vectorspandqsuch that: a p=2q b p=¡^12 q.Letqbe abEXERCISE 24F
1 For r=μ
2
3¶
and s=μ
4
¡ 2¶
, find geometrically:a 2 r b ¡ 3 s c^12 r d r¡ 2 s
e 3 r+s f 2 r¡ 3 s g^12 s+r h^12 (2r+s)2 Check your answers to 1 using component form arithmetic.
3 Draw sketches of any two vectorspandqsuch that:
a p=q b p=¡q c p=3q d p=^34 q e p=¡^32 q4 For p=μ
3
1¶
and q=μ
¡ 2
3¶
, find r=μ
x
y¶
such that:a r=p¡ 3 q b p+r=q c q¡ 3 r=2p d p+2r¡q= 0
5 Ifais any vector, prove that jkaj=jkjjaj: Hint: Writeain component form.Two vectors areparallelif one is a scalar multiple of the other.
If two vectors are parallel then one vector is a scalar multiple of the other.Ifais parallel tobthen we write akb.Thus, ² if a=kb for some non-zero scalark, then akb
² if akb there exists a non-zero scalarksuch that a=kb.G PARALLEL VECTORS [5.1, 5.2]
q q qp q pa
bVectors (Chapter 24) 497IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_24\497IGCSE01_24.CDR Monday, 27 October 2008 2:27:10 PM PETER