We again construct a difference table, and this time we include another row for thesecond difference
¢2. This is the difference between the terms of the first difference.
n 123456
un 4918314869
¢1 5 9 13 17 21
¢2 44 4 4
What to do:
5 Construct a difference table for the quadratic sequence defined by:
a un=n^2 +2n+3 b un=¡n^2 +5n+4
6 Copy and complete:
For the quadratic sequence un=an^2 +bn+c, the values of¢2are ......
7 Copy and complete the difference table for the general quadratic sequence un=an^2 +bn+c:
n 12 3456
un a+b+c 4 a+2b+c 9 a+3b+c
¢1 3 a+b 5 a+b
¢2 2 a
8 Describe how the circled elements in 7 can be used to find the formula forun.
9 Use the difference method to find un=an^2 +bn+c for the sequence:
a 2 , 0 , 0 , 2 , 6 , ...... b
10 Consider any two cubic sequences of the form un=an^3 +bn^2 +cn+d.
For each sequence, construct a difference table for n=1, 2 , 3 , 4 , 5 , 6 :
Include rows for¢1,¢2and¢3. Record your observations.
11 Describe how the table in 10 can be used to find the formula for un=an^3 +bn^2 +cn+d.
You should have discovered that:
² For thelinear sequence un=an+b, thefirst differencesare constant and equal toa.
The general difference table is:
n 12345
un a+b 2 a+b 3 a+b 4 a+b 5 a+b
¢1 aaaa
We use¢1to finda, and the first term ofunto findb.
² For thequadratic sequence un=an^2 +bn+c, thesecond differencesare constant and equal to 2 a.
The general difference table is:
n 12 3 4
un a+b+c 4 a+2b+c 9 a+3b+c 16 a+4b+c
¢1 3 a+b 5 a+b 7 a+b
¢2 2 a 2 a
We use the circled terms to finda,bandc.
540 Sequences (Chapter 26)
¡ 5 , 4 , 19 , 40 , 67 , ......
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_26\540IGCSE01_26.CDR Tuesday, 18 November 2008 11:03:46 AM PETER