Proof: Opposite angles of a cyclic quadrilateralJoin OA and OC.Let ADCb =®o and AbBC= ̄o
) AOCb =2®o fangle at the centreg
and reflex AOCb =2 ̄o fangle at the centreg
But 2 ®+2 ̄= 360 fangles at a pointg
) ®+ ̄= 180
) ABCb +ADCb = 180oand since the angles of any quadrilateral add to 360 o,
BADb +BbCD= 180oProof: Exterior angle of a cyclic quadrilateralThis theorem is an immediate consequence of the opposite angles
of a cyclic quadrilateral being supplementary.Let AbBC=μo
) ADCb = (180¡μ)o fopp. angles of cyclic quad.g
) CDEb =μo fangles on a lineg
) AbBC=CDEbExample 3 Self Tutor
Solve forx:The angles given are opposite angles of a cyclic quadrilateral.) (x+ 15) + (x¡21) = 180
) 2 x¡6 = 180
) 2 x= 186
) x=93Ob°a°2°a
2°bAB CDOq°AB CD
E()180¡-¡q°
q°()x-21°()x¡+¡15°Circle geometry (Chapter 27) 557IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_27\557IGCSE01_27.CDR Monday, 27 October 2008 2:40:46 PM PETER