Cambridge International Mathematics

(Tina Sui) #1

EXERCISE 28C.2


1 Solve forx, giving answers correct to 3 decimal places:
a 2 x= 100 b 2 x=0: 271 c 2 x=¡ 3
d 5 x=8 e 7 ¡x=23 f 9 x= 10 000
g 3 x=0:006 51 h 5 £ 2 ¡x=18 i 200 £ 2 x= 5800
j 300 £ 2 ¡^3 x=4: 1 k 25 £ 3 ¡^2 x=0: 035 l 4 £ 2 ¡^0 :^02 x=0: 07
m 3 x+1=4 n 23 x¡^2 =5 o 3(2x¡^2 )=1

Exponential functions model real life situations in many branches of science and commerce. Common
applications include compound interest and biological modelling.

Example 7 Self Tutor


During a locust plague, the area of land eaten is given by A= 8000£ 20 :^5 n hectares wherenis
the number of weeks after the initial observation.
a Find the size of the area initially eaten.
b Find the size of the area eaten after: i 4 weeks ii 7 weeks.
c GraphAagainstn.
d How long would it take for the area eaten to reach50 000hectares?

a Initially, n=0 ) A= 8000£ 20
) A= 8000hectares
biWhen n=4,
A= 8000£ 20 :^5 £^4
= 8000£ 22
= 32 000ha

ii When n=7,
A= 8000£ 20 :^5 £^7
= 8000£ 23 :^5
¼90 500ha
cdWe plot Y 1 = 8000£ 20 :^5 X and
Y 2 = 50 000 on the same axes.
The graphs meet when X¼ 5 : 29
) it takes approximately 5 : 29 weeks for
the area eaten to reach50 000hectares.

PROBLEM SOLVING WITH EXPONENTIAL


FUNCTIONS [3.2]


D


2 4 6

100000

80000

60000

40000

20000
nweeks

A(ha)

8000
O

A¡=¡50¡000

A= 8000 ́ 20.^5 n

» 5. 29

Exponential functions and equations (Chapter 28) 573

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_28\573IGCSE01_28.CDR Tuesday, 28 October 2008 12:49:18 PM PETER

Free download pdf