Cambridge International Mathematics

(Tina Sui) #1
Proof(for a triangle with acute angleA):
Consider triangle ABC shown.

Using Pythagoras’ theorem, we find

b^2 =h^2 +x^2 ,soh^2 =b^2 ¡x^2
and a^2 =h^2 +(c¡x)^2
Thus, a^2 =(b^2 ¡x^2 )+(c¡x)^2
) a^2 =b^2 ¡x^2 +c^2 ¡ 2 cx+x^2
) a^2 =b^2 +c^2 ¡ 2 cx ::::::(1)

But in¢ACN, cosA=

x
b

and so x=bcosA

So, in (1), a^2 =b^2 +c^2 ¡ 2 bccosA

Similarly, we can show the other two equations to be true.

Challenge: Prove theCosine Rule a^2 =b^2 +c^2 ¡ 2 bccosA, in the case whereAis an obtuse angle.
You will need to use cos(180o¡μ)=¡cosμ:

We use thecosine rulewhen we are given:
² two sidesand theincluded anglebetween them, or
² three sides.

Useful rearrangements of the cosine rule are:

cosA=

b^2 +c^2 ¡a^2
2 bc

, cosB=

a^2 +c^2 ¡b^2
2 ac

, cosC=

a^2 +b^2 ¡c^2
2 ab

They can be used if we are given all three side lengths of a triangle.

Example 8 Self Tutor


Find, correct to 2 decimal places,
the length of BC.

By the cosine rule:

a^2 =b^2 +c^2 ¡ 2 bccosA
) a=

p
122 +10^2 ¡ 2 £ 12 £ 10 £cos 38o
) a¼ 7 : 41

) BC is 7 : 41 m in length.

AB

C

A

ba

xcx¡-¡

h

N

A C

B

10 m

38°
12 m

A C

B

10 m

38°
12 m

am

Further trigonometry (Chapter 29) 589

GEOMETRY
PACKAGE

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_29\589IGCSE01_29.CDR Friday, 31 October 2008 9:54:56 AM TROY

Free download pdf