Proof(for a triangle with acute angleA):
Consider triangle ABC shown.
Using Pythagoras’ theorem, we find
b^2 =h^2 +x^2 ,soh^2 =b^2 ¡x^2
and a^2 =h^2 +(c¡x)^2
Thus, a^2 =(b^2 ¡x^2 )+(c¡x)^2
) a^2 =b^2 ¡x^2 +c^2 ¡ 2 cx+x^2
) a^2 =b^2 +c^2 ¡ 2 cx ::::::(1)
But in¢ACN, cosA=
x
b
and so x=bcosA
So, in (1), a^2 =b^2 +c^2 ¡ 2 bccosA
Similarly, we can show the other two equations to be true.
Challenge: Prove theCosine Rule a^2 =b^2 +c^2 ¡ 2 bccosA, in the case whereAis an obtuse angle.
You will need to use cos(180o¡μ)=¡cosμ:
We use thecosine rulewhen we are given:
² two sidesand theincluded anglebetween them, or
² three sides.
Useful rearrangements of the cosine rule are:
cosA=
b^2 +c^2 ¡a^2
2 bc
, cosB=
a^2 +c^2 ¡b^2
2 ac
, cosC=
a^2 +b^2 ¡c^2
2 ab
They can be used if we are given all three side lengths of a triangle.
Example 8 Self Tutor
Find, correct to 2 decimal places,
the length of BC.
By the cosine rule:
a^2 =b^2 +c^2 ¡ 2 bccosA
) a=
p
122 +10^2 ¡ 2 £ 12 £ 10 £cos 38o
) a¼ 7 : 41
) BC is 7 : 41 m in length.
AB
C
A
ba
xcx¡-¡
h
N
A C
B
10 m
38°
12 m
A C
B
10 m
38°
12 m
am
Further trigonometry (Chapter 29) 589
GEOMETRY
PACKAGE
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_29\589IGCSE01_29.CDR Friday, 31 October 2008 9:54:56 AM TROY