Cambridge International Mathematics

(Tina Sui) #1
EXERCISE 31C
1 Write as a single logarithm:
a log 3 2 + log 38 b log 29 ¡log 23 c 3 log 5 2 + 2 log 53
d log 3 8 + log 37 ¡log 34 e 1 + log 34 f 2 + log 35
g 1 + log 73 h 1 + 2 log 43 ¡3 log 45 i 2 log 3 m+ 7 log 3 n
j 5 log 2 k¡3 log 2 n
2 If log 2 7=p and log 2 3=q, write in terms ofpandq:
a log 221 b log 2

¡ 3
7

¢
c log 249 d log 227

e log 2

¡ 7
9

¢
f log 2 (63) g log 2

¡ 56
9

¢
h log 2 (5:25)

3 Writeyin terms ofuandvif:
a log 2 y= 3 log 2 u b log 3 y= 3 log 3 u¡log 3 v
c log 5 y= 2 log 5 u+ 3 log 5 v d log 2 y=u+v
e log 2 y=u¡log 2 v f log 5 y=¡log 5 u
g log 7 y= 1 + 2 log 7 v h log 2 y=^12 log 2 v¡2 log 2 u
i log 6 y=2¡^13 log 6 u j log 3 y=^12 log 3 u+ log 3 v+1

4 Without using a calculator, simplify:

a

log 216
log 24

b

logp 16
logp 4

c

log 525
log 5

¡ 1
5

¢ d
logm 25
logm

¡ 1
5

¢

Logarithms in base 10 are calledcommon logarithms.
y= log 10 x is often written as just y= logx, and weassumethe logarithm has base 10.

Your calculator has a log key which is for base 10 logarithms.

Discovery Logarithms
#endboxedheading

The logarithm of any positive number can be evaluated using the log key on your calculator. You will

1 Copy and complete: Number Number as a power of 10 logof number
10
100
1000
100 000 105 log(100000) = 5
0 : 1
0 : 001

D LOGARITHMS IN BASE 10 [3.10]


need to do this to evaluate the logarithms in this discovery.

630 Logarithms (Chapter 31)

What to do:

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_31\630IGCSE01_31.CDR Friday, 31 October 2008 9:46:05 AM PETER

Free download pdf