Cambridge International Mathematics

(Tina Sui) #1

Example 9 Self Tutor


Write these equations without logarithms:
a logD=2x+1 b logN¼ 1 : 301 ¡ 2 x

a logD=2x+1
) D=10^2 x+1
or D= (100)x£ 10

b logN¼ 1 : 301 ¡ 2 x
) N¼ 101 :^301 ¡^2 x

) N¼

101 :^301

102 x

¼

20

102 x

Example 10 Self Tutor


Write these equations without logarithms:
a logC= loga+ 3 logb b logG= 2 logd¡ 1

a logC= loga+ 3 logb
= loga+ logb^3
= log(ab^3 )
) C=ab^3

b logG= 2 logd¡ 1
= logd^2 ¡log 10^1

= log

μ
d^2
10


) G=

d^2
10

EXERCISE 31D.2
1 Write the following as logarithmic equations in base 10 :

a y=ab^2 b y=
a^2
b

c y=d
p
p

d M=a^2 b^5 e P=

p
ab f Q=

p
m
n

g R=abc^2 h T=5

r
d
c

i M=

ab^3
p
c
2 Write these equations without logarithms:
a logQ=x+2 b logJ=2x¡ 1 c logM=2¡x
d logP¼ 0 :301 +x e logR¼x+1: 477 f logK=^12 x+1

3 Write these equations without logarithms:
a logM= loga+ logb b logN= logd¡loge
c logF= 2 logx d logT=^12 logp
e logD=¡logg f logS=¡2 logb
g logA= logB¡2 logC h 2 logp+ logq= logs
i ¡logd+ 3 logm= logn¡2 logp j logm¡^12 logn= 2 logP
k logN= 1 + logt l logP=2¡logx

Logarithms (Chapter 31) 633

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_31\633IGCSE01_31.CDR Monday, 27 October 2008 3:02:10 PM PETER

Free download pdf