The Chemistry Maths Book, Second Edition

(Grace) #1

90 Chapter 3Transcendental functions


Section 3.3


12.Find the principal values of


(i) (ii)sin


− 1

(1) (iii) (iv)cos


− 1

(−1)


13.The Bragg equation for the reflection of radiation of wavelength λfrom the planes of a


crystal isnλ 1 = 12 d 1 sinθwhere dis the separation of the planes, θis the angle of incidence


of the radiation, and nis an integer. Calculate the angles θat which X-rays of wavelength


1.5 1 × 110


− 10

m are reflected by planes separated by3.0 1 × 110


− 10

m.


Section 3.4


14.Given the sidea 1 = 11 and anglesA 1 = 1 π 24 andB 1 = 1 π 23


of a triangle ABC, Figure 3.24, find the third angle and


the other two sides.


15.Given the sidesa 1 = 12 ,b 1 = 1 2.5andc 1 = 13 of a triangle


ABC, find the angles.


16.Given the sidesa 1 = 13 , b 1 = 14 , and included angle


C 1 = 1 π 24 of triangle ABC, find the third side and the


other two angles.


17.Given the sides , and included angleC 1 = 1 π 24 of the triangle ABC, find the


third side and the other two angles.


18.Express in terms of in terms of the sines and cosines of 2 θand 5 θ:


(i)sin 17 θ, (ii)sin 13 θ, (iii)cos 17 θ, (iv)cos 13 θ.


19.Express (i)sin 13 θin terms of sin 1 θ, (ii)cos 13 θin terms ofcos 1 θ.


20.Expresscos 14 xin terms of


(i)sin 12 xand cos 12 x, (ii)sin 12 xonly, (iii)cos 12 xonly, (iv)sin 1 xonly,


(v)cos 1 xonly.


21.Givensin 1 10° 1 = 1 0.1736, sin 1 30° 1 = 1122 , sin 1 50° 1 = 1 0.7660, findcos 1 20°(without using a


calculator).


22.Express in terms of the sines of 8xand 2x: (i)sin 15 x 1 cos 13 x, (ii)cos 15 x 1 sin 13 x.


23.Express in terms of the cosines of 8xand 2x: (i)sin 15 x 1 sin 13 x, (ii)cos 15 x 1 cos 13 x.


24.Express (i)sin(π 1 ± 1 θ)and (ii)cos(π 1 ± 1 θ)in terms ofsin 1 θandcos 1 θ.


25.The function ψ(x, t) 1 = 1 sin 1 πx 1 cos 12 πtrepresents a standing wave. Find the values of time t


for whichψhas (i)maximum amplitude, (ii)zero amplitude. (iii)Sketch the wave


function betweenx 1 = 10 andx 1 = 13 at (a) t 1 = 10 , (b) t 1 = 1128.


26.The function


represents the superposition of two harmonic waves with the same wavelength λ. Show


that φis (i)also harmonic with the same wavelength, and (ii)can be written as


where and tan 1 α 1 = 1 b 2 a.


Section 3.5


27.Find the cartesian coordinates of the points whose polar coordinates are


(i)r 1 = 1 3, θ 1 = 1 π 2 3, (ii)r 1 = 1 3, θ 1 = 15 π 2 3.


Aab=+


22

φ


λ


() sinxA α


x


=+








2 π


φ


λλ


() sinxa cos


x


b


x


=+


22 ππ


ab=,= 23


cos



()


1 1

2

sin



()


11

2

...................................................................................................................................................................................................................................................................................

.....

.....

.....

.....

.....

......

....

.....

......

.....

....

......

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

......

....

.....

......

.....

....

......

.....

.....

.....

.....

.....

.....

.....

.....

.....

......
....
...
...
...
...
...
....
...
...
...
...
...
...
...
...
....
...
...
...
...
...
...
...
...
....
...
...
...
...
...
....
...
...
...
...
...
...
...
...
....
...
...
..

A


B


C


a


b


c


..

..

...

...

...

...

...
...
...
..
...
..
..

.
......
.............

......

....

...

..

Figure 3.24

Free download pdf