The Chemistry Maths Book, Second Edition

(Grace) #1

4.5 Differentiation from first principles 101


EXAMPLE 4.6Find from first principles for.


(1)


(2) (3)


0 Exercise 20


EXAMPLE 4.7Differentiate.


(1)


(making use of the relation (a 1 − 1 b)(a 1 + 1 b) 1 = 1 a


2

1 − 1 b


2

).


(2) (3)


0 Exercise 21


EXAMPLE 4.8Differentiatee


x

.


(1)y 1 = 1 e


x

, y 1 + 1 ∆y 1 = 1 e


x+∆x

1 = 1 e


x

1 × 1 e


∆x

From the definition of the exponential function as an infinite series, equation


(3.31),


Therefore,


=+eex+ + +


xx


xx

(


() ()


∆ )


∆∆


23

26





yye x


xx


x

+=×++ + +∆∆


∆∆


(


() ()


1 )


26


23




ex


xx


∆x


∆∆


=+ + 1 + +


23


23

()


!


()


!





dy


dx


y


x
x

x


=







=



lim




0 ∆


1


2





y


x
xx x

=


++


1


=


+−


++


=


++


()xxx


xx x


x


xx x






∆∆


∆∆



yxxx


xxxxx


xx x


=+− =


+− × + +


++


()( )


y x yy xx=+=+, ∆∆


x


dy


dx


y


x


x


x


=










=−



lim


∆ 0


1


2


∆∆


y


xxx x


=







1


()


∆∆





yfx x fx


xxx


x


xx x


=+− =






−=







()()


()


11


yfx


x


yyfxx


xx


==,+=+=






() ( )


11


∆∆



y


x


=


dy 1


dx

Free download pdf