4.6 Differentiation by rule 105
EXAMPLE 4.12Product rule
The function
y 1 = 1 (2x 1 + 13 x
2
) 1 sin 1 x
is easily differentiated only by means of the product rule. Let y 1 = 1 uv where
u 1 = 1 (2x 1 + 13 x
2
)andv 1 = 1 sin 1 x. Then
= 1 (2x 1 + 13 x
2
) 1 cos 1 x 1 + 1 (2 1 + 16 x) 1 sin 1 x
0 Exercises 29–32
The quotient rule
By Rule 4 in Table 4.3,
EXAMPLE 4.13Differentiate
Lety 1 = 1 u 2 vwhereu 1 = 1 (2x 1 + 13 x
2
)andv 1 = 1 (5 1 + 17 x
3
). Then
0 Exercises 33–36
The chain rule (function of a function)
The polynomial
y 1 = 1 f(x) 1 = 1 (2x
2
1 − 1 1)
3
=
++−+
()()( )()
()
57 26 2 3 21
57
322
32
xxxxx
x
dy
dx
x
d
dx
xx xx
d
dx
=+ + − + +x
()()()()57 23 23 57
3223
()57+
32
x
y
xx
x
=
23
57
2
3
d
dx
udu
dx
u
d
v dx
v
v
v
=−
2
=+()sinsin()23+ 23 +
22
xx
d
dx
xx
d
dx
xx
dy
dx
u
d
dx
du
dx
=+
v
v