4.6 Differentiation by rule 107
EXAMPLES 4.15The chain rule
(i) y 1 = 1 sin 12 x 1 = 1 sin 1 u, whereu 1 = 12 x
(ii)y 1 = 1 cos(2x
2
1 − 1 1) 1 = 1 cos 1 u, whereu 1 = 12 x
2
1 − 11
(iii) , whereu 1 = 12 x
2
1 − 11
(iv) y 1 = 1 ln(2x
2
1 − 1 1) 1 = 1 ln 1 u, whereu 1 = 12 x
2
1 − 11
(v)y 1 = 1 ln(sin 1 x) 1 = 1 ln 1 u, whereu 1 = 1 sin 1 x
0 Exercises 41–55
dy
dx
dy
du
du
dx u
x
x
x
=×=
==
1
(cos )
cos
cot
sin
xx
dy
dx
dy
du
du
dx u
x
x
x
=×=
×=
−
1
4
4
21
2
()
dy
dx
dy
du
du
dx
exxe
ux
=×= × =
−
()() 44
21
2
ye e
xu
==
21 −
2
dy
dx
dy
du
du
dx
=×=− × =−( sin ) ( )ux x x 4421 sin( −)
2
dy
dx
dy
du
du
dx
=×=(cos ) ( ) cosux×=22 2
Table 4.4 The chain rule
Type Function Derivative
power of uu
a
trigonometric sin 1 u
cos 1 u
tan 1 u
exponential e
u
logarithmic ln 1 u
1
u
du
dx
e
du
dx
u
sec
2
u
du
dx
−sinu
du
dx
cosu
du
dx
au
du
dx
a− 1